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Abstract

Waldenstrom’s macroglobulinemia (WM) or lymphoplasmacytic lymphoma is a

kind of non-Hodgkin lymphoma. The malignant cells make a lot of abnormal

macroglobulin protein. It starts in B cells and develops essentially in the bone

marrow that makes the distinctive types of platelets. This can prompt low dimen-

sions of blood cells which makes it difficult for the body to fight disease. WM is

characterized by hypersecretion of immunoglobulin-M and infiltration of neoplastic

B-cells into the bone marrow and lymphoid tissues. Chemoimmunotherapy is com-

monly used for clinical management of WM, however, novel targeted agents such as

the BTK-inhibitor, Ibrutinib and the proteasome inhibitor Bortezomib have shown

significant improvement in patients with relapsed/refractory WM. Despite their

activity though, drug resistance and relapse are common and there is limited in-

sight into the mechanisms responsible for resistance to these targeted agents. The

aim of the current study is to identify genes associated with Bortezomib-resistance

in WM cells and their response to Pharmacokinetics-Pharmacodynamics model-

ing. Using Bortezomib-resistant and wild type isogenic WM cell lines, 25 genetic

Biomarkers of acquired resistance to Bortezomib are identified through analysis of

directed genes interaction networks and proposed for clinical studies. Among them,

12 are known. Resistant Biomarkers associated pathways are retrieved through

the Reactome database and cross-checked through KEGG and other databases,

the identified biomarkers are annotated and mapped to the pathways to deter-

mine their role in WM. Furthermore, the Pharmacokinetics-Pharmacodynamics

(PK/PD) modeling is also done in the study to determine the effect of selected

therapies on the tumor and response of Biomarkers against them. The PK profiles

are generated using clinical trials data to determine the effects of the body on drug

concentration, after PK profiles, the pharmacodynamics analysis is performed to

determine the effects of drugs on the body. It is observed that the Bortezomib and

Ixazomib reduced the tumor weight initially but as soon as the dose is stopped tu-

mor again started to increase, Carfilzomib and Oprozomib showed better results,

Rituximab more efficiently reduce the weight of tumor. Finally, the simulations of
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the models are biologically validated through comparison with clinical pharmacoki-

netics results. In order to determine the response of Biomarkers against specific

drugs, Biomarkers response model is designed by using gene expression data of

WM, and drugs doses are administered. The dynamic levels of a Biomarkers ob-

served for each dose are key marker uncovering the information and procedures of

the medication activity. In conclusion, the properties and effects of drugs on tumor

growth can be portrayed by this type of modeling studies and incorporated por-

tion Biomarkers-response models can be developed with high integrity of-fit and

incredible predictive capacity. This methodology shed new light on the itemized

procedures and system of PK/PD modeling and may offer a significant reference

for a proper dosing regimen in further clinical applications.
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Chapter 1

Introduction

1.1 Cancer

Cancer is the second driving reason for mortalities around the world. Generally,

the prevalence of malignancy has really increased; just in the United States alone,

around 1,665,540 individuals experienced tumor, and 585,720 of them died because

of this malignancy by 2014 [1, 2]. Therefore, cancer is a serious issue influencing

the health of every human. Tragically, it is a variable disease at the tissue level

and this assortment is a noteworthy test for its particular determination, trailed

by the viability of treatment [3, 4]. In men, the most elevated rates of cancer

are the prostate, rectum and colon, bronchus, lungs, and urinary bladder. In

ladies, malignancy pervasiveness is most astounding in the bronchus, breast, lung,

colon, uterus, rectum, uterine corpus, ovarian, and thyroid, individually [5]. For

children, the most noteworthy rate of malignancy are tumors identified with the

lymph nodes, brain, and blood cancers [6, 7].

The tumor begins with a progression of progressive mutations in the genes with

the goal that these mutations change cell functions. Generally, Cancer disturbs

the activities of cells and results in the dysfunction of important genes. This

disruption is viable in the cell cycle and prompts irregular multiplication [8, 9].

1
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Proto-oncogenes are responsible for cell division and development under an ordi-

nary condition, however, progress toward becoming oncogenes during hereditary

mutations, which are most unsafe for cell presence[10]. In the previous three

decades, researchers have revealed a significant volume of data about genes and

proteins and their roles in tumor development. The actual role of transformed

genes in malignant cells is the most vital disclosures. Recently, ecological vari-

ables identified with hereditary changes have been reported With the assistance

of various molecular strategies [1].

Waldenstrom macroglobulinemia (WM) is an uncommon kind of malignancy that

starts in the white blood cells. It is viewed as a kind of non-Hodgkin’s lymphoma.

It’s occasionally called lymphoplasmacytic lymphoma. The most persistent fea-

ture of the bone marrow or lymph nodes of patients with WM is the appearance

of pleomorphic B cells at various phases of development, for example, small lym-

phocytes, lymphoplasmacytoid cells, and plasma cells [11].

1.2 Molecular Basis and Treatment Options

There is a convincing proof that the hereditary changes are associated with the

tumorigenesis. Hereditary changes that prompt genetic disorders and oncogene

generation incorporate point mutations, gene amplification, chromosomal translo-

cation, deletions, and insertions. Molecular investigations of cancer cells gather

information that demonstrates several hereditary injuries of different combinations

of oncogenes and tumor silencer genes in cancer, proposing participation of both

kinds of genes. Hereditary damage of oncogenes ordinarily brings about gain of

the function mutations while that of tumor silencer genes loss-of-function [12].

Cancer can be treated by chemotherapy, hormonal therapy, surgery, radiation

therapy, targeted therapy, and synthetic lethality. The decision of treatment relies

on the area and grade of the tumor and the phase of the illness, and in addition

the general condition of the patient [13]. The poor diagnosis, visualization, and

treatments of the ailment could be, for the most part, improper because of the
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variety of severities, locations, durations, affectability and resistance against drugs,

comprehension of pathogenesis, and cell origin and differentiation. With expanding

proof that the networks and interactions amongst genes and proteins assume to

play a critical role in the examination of molecular mechanisms of cancer, it is

fundamental and vital to present another idea of systems clinical medicine, to

integrate clinical science, system biology, omics-based innovation, computational

biology and bioinformatics to enhance analysis, treatments and prognosis of cancer

[14].

1.3 Drug Resistance in Cancer

Drug resistance is a common issue that occurs when an illness becomes tolerant

of pharmaceutical medicines. This idea was first considered when microorganisms

became resistant to specific anti-infection agents, yet from that point onwards

comparable mechanisms have been found to occur in different sicknesses, including

cancer. A few strategies for drug resistance are specific to the disease, while others,

for example, drug efflux, which is seen in microorganisms and human cancers that

are resistant to several drugs, are developmentally monitored. However, different

kinds of cancers that are at first vulnerable to chemotherapy, after some time they

can create resistance through these and different components, for example, DNA

transformations and metabolic changes that cause medication degradation and

inhibition [15].

There are several issues in the cancer treatment, for example, resistance against

cytotoxic operators and harmful chemotherapy. Currently, 90 percent of disap-

pointments in the chemotherapy occurs due to the intrusion and metastasis of

cancer identified with drug resistance. In chemotherapy, due to the administra-

tion of a specific medication, an extensive number of patient tumor cells shows

resistance to the medication. In this way, the drug resistance acts as a significant

issue in the field of the tumor [16]. The mechanisms of resistance in a large number

of cancer are unknown due to involvement of several pathways and genes.
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Multidrug resistance (MDR) in the tumor chemotherapy has been taken attention

because of the ability of cancer cells to resist against an extensive variety of hostile

anti-cancer drugs. MDR might be created by the expanded drug release outside

the cells. So the drug absorption is decreased in these cells [17]. Similarly, the

Proteasome inhibitors are used to cure WM but the patients did not respond to

treatment because of resistance mechanisms.

1.4 Bioinformatics in the Treatment of Cancer

Bioinformatics is a multidisciplinary field that turns out from the combination of

different sciences and areas like software engineering, biology, chemistry, statistics,

arithmetic, and considerably more [18–20]. It is one of these sciences which have

an immense impression in the medical field, attracts people and enhances their

interests in the medical industry[21, 22]. Because of expansive and quick strides

in the medical field research, a ton of endeavors are reached out keeping in mind the

end goal to figure out how to identify, analyze and treat such dangerous ailments.

Additionally, the rise of the Human Genome project revelation in 2003 had put

more weight on Bioinformatics to be connected in the tumor treatment.

Bioinformatics is presently being connected in the cancer research and treatment

[23], and obviously, specialists and scientists have executed fast and extended mea-

sure of research on the tools of bioinformatics that are viewed as fundamental for

the tumor treatments [24]. Bioinformatics is one of the different approaches to

concentrate bioinformatics strategies in cancer, as per the specificity of disease

metabolism, correspondence, signaling, and proliferation. The specificity, appli-

cability, and integration of approaches, computational devices, programming, and

databases which can be utilized to investigate the molecular components of disease,

recognize and approve novel biomarkers, network-based biomarkers, and person-

alized pharmaceuticals in cancer [14].

In this study, we have discussed a method of the identification of Network-based

resistant biomarkers for Bortezomib in Waldenstrom macroglobulinemia (WM)
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and pharmacokinetic - pharmacodynamics (PK-PD) Modeling and simulations of

Bortezomib and other Drugs used in WM.

1.5 Bioinformatics Approaches for Biomarkers

Identification

Bioinformatics is playing a more vital role in the recognizable proof and approval

of biomarkers, particular to clinical phenotypes identified with early findings and

estimations to screen the advancement and progression of the disease, its reaction

to treatment, and indicators for the change of patient’s life quality [25]. Of genes,

protein, peptide, synthetic or physic-based factors in the tumor, biomarkers are

researched from a single to various markers, from the static network system to

dynamic one and from the expression to function. Network-based biomarkers as

another sort of biomarkers with protein-protein interactions are identified with the

coordination of learning on protein interactions, annotations, and signaling path-

way [26, 27]. Tumor biomarkers ought to have the characters of dynamics, net-

works, communications, and specificities to sickness analysis, prognosis, and treat-

ment [28]. To determine the response of particular biomarker, A Pharmacokinetic-

pharmacodynamics (PK/PD) model could be used. The models ascertain the drug

concentration that accomplishes the desired response of biomarkers in a patient,

not just PK changes in patients, yet in addition for variety in the pharmacological

reaction.

1.6 Pharmacokinetic-Pharmacodynamic Model-

ing and Simulations

Pharmacokinetic (PK) and pharmacodynamic (PD) data arise from the scien-

tific preface of present-day pharmacotherapy. Pharmacokinetics depicts the drug

concentration-time courses in body fluids because of the administration of specific
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drug dosage, where as pharmacodynamics is the prediction of observed effects be-

cause of a specific concentration of a drug. The basis for PK/PD-modeling is to

connect pharmacokinetics and pharmacodynamics so as to build up and assess

dose-concentration-response relationships and in this way depict and foresee the

effect-time courses of a drug dose [29]. Generally, in light of the basic physiological

process, PK/PD modeling ought to be favored at feasible times. The extended

utilization of PK/PD modeling is thought to be very helpful for drug advancement

and in addition, connected pharmacotherapy will doubtlessly enhance the present

condition of therapeutics.

1.7 Purpose of the Study

The purpose of this study is to identify those biomarkers that show resistance

against Bortezomib. These biomarkers should set up the right conclusion with

high affectability and specificity, can likewise be utilized to predict whether a given

patient may get benefit by a given treatment? These not just guide the determi-

nation of patient subsets for particular medicines, however, will distinguish new

restorative targets. The purpose of this research study is also to perform PK/PD

modeling to predict the Biomarkers response to Bortezomib. The biomarkers

which will be predicted in this research will be used for the early identification of

cancers, design of individual PK/PD modeling based therapies, and to distinguish

underlying processes involved in the WM.

1.8 Gap Analysis

Cancer drug resistance keeps on being a major challenge in medicinal oncology.

Clinically, resistance can emerge because of cancer treatment. Unfortunately, Tu-

mor heterogeneity may likewise cause resistance, making the issue significantly

more difficult. Therefore the biomarkers should be identified which builds up a

certain level of resistance against drugs.
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1.9 Problem Statement

The problem statement of this study is to identify those genes which show several

levels of resistance against Bortezomib and pharmacokinetic-pharmacodynamic

modeling and simulations of other drugs with Bortezomib to predict the response

of biomarkers. The problem statement of this dissertation is composed of two

parts.

• Network-based resistant biomarkers of Waldenstrom’s macroglobulinemia as

hub nodes in networks and have high prediction values for resistance against

bortezomib

• The mechanistic pharmacokinetic-pharmaco-dynamic modeling and simula-

tions of bortezomib and other drugs used as the treatment option.

1.10 Proposed Solution

Illustration of quantitative understanding of the resistance mechanisms that are

most fundamentally engaged with development and progression of tumor and be-

havior of the modified cells and genes for deciding the site at which oncologist

ought to intercede is of prime significance from the therapeutic perspective and

analyzing their role against the treatment choices. Therefore, the possible pro-

posed solution to solve resistance mechanisms is the identification of biomarkers

that can be utilized to present a personalized treatment approach, where just pa-

tients with a high probability of treatment advantage will get the treatment. The

PK/PD modeling and simulation of drugs by the utilization of scientific models;

i.e. PK/PD models to depict the relationship between the concentration and ef-

fect, and the relationship between dose and concentration. The PK/PD modeling

to determine the response of particular biomarker against specific drug therapy,

either solitary or in combination. These approaches will help to identify appro-

priate treatment regimens for the disease as well as their effects on the abnormal

behavior of biomarkers expressions.
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1.11 Aims and Objectives

This thesis aims at delineating the idea of resistant biomarkers identification from

gene and or protein interaction networks, developed through the gene expres-

sion profiles of established WM cell lines BCWM.1, MWCL-1 and RPCI-WM1,

including their Bortezomib-resistant subclones BCWM.1/BR, MWCL-1/BR and

RPCI-WM1/BR. The thesis also illustrates the idea of PK/PD modeling and sim-

ulation using the drugs involved in the treatment of WM. The aims and objectives

of this work are following

1.11.1 Aims and Objectives of the Resistant Biomarkers

Identification

1. Identification of resistant biomarkers that can be utilized to access change

in Bortezomib reaction to a treatment

2. Advancement of new robotic speculations for the progression of disease or

reaction to treatment interventions prompting new therapies or to a superior

utilization of existing treatments

3. Completing clinical trials of existing and recently created drugs with putative

advantageous effects for resistant biomarkers which tolerate or do not show

a response to a bortezomib treatment

4. Breaking down the health-economic effect of biomarker-guided customized

treatment

1.11.2 Aims and Objectives of PK/PD Modeling

1. Ideal pharmacodynamic sampling for conceivable future examinations.

2. Estimation of drugs effects and concentrations on the tumor.

3. Measurement of changes in plasma fixations and blood.
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4. Alteration of dosages in light of estimations that could be advantageous to

clinical results.

5. Comparison of a hypothetically simulated dosage individualized regimen to

the standard dosage regimen.

1.12 Scope

This study has a wide range of scope due to its multidimensional nature, it involves

both the bioinformatics and system biology. The bioinformatics area of this study

covers the identification of resistant biomarkers of WM, whereas system biology

involves the PK/PD modeling and simulations.

The identification of resistant biomarkers serves to help distinguish the most

proper population for a specific treatment. Also, the identification of resistant

biomarkers gives a dynamic and intense way to deal with understanding the range

of WM progression and the reaction of these biomarkers to bortezomib treatment.

The PK/PD modeling acts as a guide for the drug disclosure researchers toward

ideal design and conduction of PK/PD studies in the examination stage. PK/PD

systems can be actualized in early research periods of drug disclosure tasks to

empower a fruitful change to drug advancement. Successful PK/PD study de-

sign, investigation, and translation can enable researchers to clarify the connection

amongst PK and PD, comprehend the mechanism of drug activity, and recognize

PK properties for advance change and ideal compound design. Also, PK/PD mod-

eling can help expand the interpretation of the potency of the compound in vitro

to the in vivo setting, diminish the quantity of in vivo animal studies, and enhance

interpretation of discoveries from preclinical species into the clinical setting.

The attempt to determine the effect of drugs on the expression level of Biomarkers

will also help to design the proper drugs against them and change in the expression

level will also help to determine proper dosage regimens.
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1.13 Our Contribution

In this thesis, First, we focus on the identification of biomarkers that show resis-

tance against the bortezomib treatment, for this reason, we specifically utilized

separate gene sets or modules of every cell line and assembled their interaction

networks. From the created networks we distinguished hubs nodes as correspond-

ing biomarkers of resistance. Besides this, we have done the PK/PD modeling of

bortezomib as a monotherapy option for WM. we likewise have done the PK/PD

modeling of different medications which are similar to bortezomib, lying in a sim-

ilar class, and are utilized as a part of the treatment of WM. In addition, we

performed the PK/PD modeling of bortezomib in a combination with the afore-

mentioned drugs as a combination therapy treatment option for Waldenstrom’s

macroglobulinemia

1.14 Organization of the Document

The remaining portion of the thesis is arranged as. The Chapter 2, explains the

specialized background on ongoing related computational techniques utilized for

biomarker recognition in the field of bioinformatics, the PK/PD modeling and

simulations, and its uses in drug disclosure and improvement methodology in the

field of systems biology. In this chapter, we also explained the issue of considering

intuitive impacts in biomarker distinguishing proof and confinements of PK/PD

methodology.

Chapter 3 comprises of two sections; section 1 center around the identification

of resistant biomarkers, here we explained our new approach for the biomarkers

identification and strategy used to validate the identified biomarkers. Part 2 focus

on the methods and data used, for the development of mechanistic PK/PD model

and the use of the developed model for PK/PD modeling of bortezomib and other

drugs, end of the part two consists of details about the strategy applied for the

validation of PK/PD model.
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Chapter 4 consists of the distinguished biomarkers, by considering their effects on

the treatment, and their contribution to critical pathways identified with Walden-

strom’s macroglobulinemia. The last segment of this chapter includes the designed

mechanistic PK/PD model, its segments and the detailed results of PK/PD mod-

eling.

Lastly, in Chapter 5 we summarized the thesis and give conceivable suggestions for

investigating in the computational biomarker identification and PK/PD modeling

and simulation areas.
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Literature Review

2.1 Waldenstrom’s Macroglobulinemia

The name Waldenstrm macroglobulinemia was coined by Jan Waldenstrm, a Swed-

ish doctor, in 1944 [30, 31]. The World Health Organization (WHO) classifies it as

a low-grade non-Hodgkin lymphoma subtype. WM is characterized as B-cell lym-

phoplasmacytic lymphoma, described by the presence of monoclonal immunoglob-

ulin M protein in the serum and penetration of lymphoplasmacytic cells in bone

marrow [32, 33]. Its occurrence is 0.38 cases per 100,000 people every year, with an

increase in age, it raises to 2.85 in patients over 80 years [34]. Among patients of all

ages, the males are more predominantly affected, the disease has a higher rate of

incidence in American than other nations [35]. There is an increased occurrence of

both strong tumors and hematologic malignancies among patients [36, 37]. WM is

classified as an immuno-secretory issue with a basic lymphoplasmacytic lymphoma

as indicated by the WHO [38].

The middle period of patients with WM at determination is 64 years. In spite of

other hematological malignancies, the clinical course of WM is generally sluggish.

It does not require quick treatment [39]. The median survival rate of patients

with WM is 5 years and 10 percent of these makeup to 15 years after analy-

sis, showing the variability for WM patients. A few reviews have been embraced

12
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to recognize clinical parameters affecting prognosis [40–42]. Most investigations

demonstrate age, beta 2-microglobulin levels, and hemoglobin ratio as solid in-

dicators of survival. Recently, the discovery of trademark cytogenetic anomalies

of the threatening clone has added prognostic information with respect to a few

hematological malignancies. At present, for WM there is no cytogenetic variation

from the norm that shows a relationship with the outcome of the disease [43, 44].

WM is presently taken as a well defined clinical substance characterized by the

presence of an IgM monoclonal gammopathy, bone marrow invasion by small lym-

phocytes that show plasma cell separation and immunophenotype such as, surface

IgM, CD5, CD10, CD19, CD20, CD23 and elimination of other lymphoproliferative

issue, including lymphoma and chronic lymphocytic leukemia [45, 46]. Smolder-

ing WM (SWM) is an inadequately depicted asymptomatic issue with an immi-

nent danger of advancing to symptomatic WM which requires treatment. It is

characterized by the existence of serum IgM 3 g/dL as well as 10 percent bone

marrow lymphoplasmacytic invasion, however, no confirmation of organ or tissue

damage such as characteristic frailty, hepatosplenomegaly, worse condition indica-

tions, hyperviscosity, or lymphadenopathy that can be credited to the proliferative

disorderliness of plasma cell [47].

2.1.1 Genetic Mutations

WM patients can give a wide range of symptoms that effect symptomatic treat-

ment. CXCR4 and MYD88 WHIM-like somatic mutations are available in greater

than 90 percent, and 30-35 percent of WM patients, separately, yet are uncom-

mon in other IgM emitting B-cell tumors. Over a portion of people with IgM

secreting monoclonal gammopathy of obscure noteworthiness, the MYD88 L265P

mutations, proposing its part as a rapid oncogenic manipulator [48–50]. CXCR4

somatic mutations are developed in the germline of Warts, Hypogammaglobu-

linemia, Infections, Myelokathexis (WHIM) disorder, and almost dependably are

available in WM patients with MYD88 L265P. Both the nonsense and frameshift

CXCR4 transformations happen in WM patients [51–53].
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MYD88 and CXCR4 changes may affect the ratio of disease, treatment result, or

potential survival. [54–56]. Insufficient tumor weight and serum IgM levels are

related to wild type MYD88 (MYD88WT) sickness, while MYD88 L265P patients

with CXCR4 WHIM mutations have more burden of the illness [57–59]. High

serum IgM levels incorporating the hyperviscosity emergency have been seen in

patients with CXCR4 WHIM/FS tumor. In one investigation, the low survival

rate was observed in patients with the MYD88WT tumor yet was unaffected by

CXCR4 mutation.

WM is normally not acquired, and most influenced individuals have no history of

cancer in their family. The condition emerges from somatic mutations during the

lifetime, which is not inherited. A few families appear to have an inclination to the

condition. Around 20 percent of individuals with Waldenstrm macroglobulinemia

have a relative with the condition or another disease consisting of abnormal B

cells.

2.1.2 Clinical Features

WM shares numerous pathological and clinical features with other B-cell lym-

phomas and multiple myeloma (MM), which frequently makes the diagnosis of

this entity difficult [54]. IgM Monoclonal Gammopathy of Unknown Significance

(MGUS) is an antecedent state for WM. Around 2 percent of IgM MGUS patients

advance to B-cell cancer every year, with the majority of these people progress-

ing to WM [60–62]. The most common clinical features are thrombocytopenia,

splenomegaly, lymphadenopathy, bleeding due to hyperviscosity, anemia, and pe-

ripheral neuropathy. lymphadenopathy and Splenomegaly are exceptional at the

beginning to about 15-20 percent, however, at later stages, additional medullary

sickness is more typical up to 60 percent of patients [63–65]. Morbidities related

to WM might be shown by tumor cell invasion, as well as by the physiochemical

and immunological properties of the monoclonal IgM protein secreted by WM cells

[66–68]. The detailed clinical features are shown in Table 2.1 obtained through

[69].
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Table 2.1: Morbidities intervened due to the IgM monoclonal protein in WM
patients, obtained through study of Treon et al [69].

IgM Monoclonal Pro-
tein properties

Condition Clinical Features

Pentameric protein
structure

Hyperviscosity

Headaches, epistaxis,
obscured vision, reti-
nal hemorrhages, leg
pain, intracranial hem-
orrhage.

Protein gets precipi-
tate while cooling

Type 1 Cryoglobuline-
mia

cold urticaria,
Raynaud-like, ul-
cers, acrocyanosis,
purpura

Glycoprotein (MAG),
Ganglioside M1
(GM1), Auto-antibody
activity to Myelin
Associated Sulfatide
moieties on peripheral
nerve sheaths

Peripheral neu-
ropathies

Sensori motor neu-
ropathies, bilateral
foot drop, ataxic gait,

Auto-antibody actions
to IgG

Type 2 Cryoglobuline-
mia

Purpura, sensorimotor
neuropathies, arthral-
gias, renal failure

Action of Auto-
antibody to RBC
antigens

Cold agglutinins

Hemolytic anemia,
acrocyanosis, Ray-
nauds phenomenom,
ivedo reticularis.

Deposition in tissues as
amorphous aggregates

Organ Dysfunction

Skin: bullous skin
disease, Schnitzlers
syndrome, papules,
GI: diarrhea,bleeding
Mal-absorption, Kid-
ney: renal failure,
proteinuria

Deposition in tissues as
amyloid fibrils

Organ Dysfunction

weight loss, Fatigue,
hepatomegaly, edema,
macroglossia, involved
organs: heart, liver,
peripheral sensory and
autonomic nerves, kid-
ney
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2.1.3 Symptoms

Few studies reported that Familial inclination towards the disease is well built

in WM [70–72]. Familial patients of WM are young, have more pressure on the

disease, and express poor response to non-proteasome inhibitor-based therapy [73].

People with symptomatic Waldenstrm macroglobulinemia can encounter general

symptoms, for example, fever, weight reduction, and night sweats. A few differ-

ent signs and symptoms of the condition are identified with the abundant IgM

proteins, which can thicken blood and impair its flow, causing a hyperviscosity

disorder. Hyperviscosity associated features incorporate nose or mouth bleeding,

obscuring or loss of vision, cerebral pain, trouble in movement (ataxia), and dizzi-

ness. In some affected people, the IgM proteins cluster together in the hands

and feet, where the temperature of a body is cooler than the center of the body.

Such proteins are known as cryoglobulins, and their clumps result in as cryoglob-

ulinemia. Cryoglobulinemia can prompt torment in the hands and feet or series of

Raynaud phenomenon, in which the fingers and toes turn white or blue in response

to cool temperatures [74].

The IgM protein can develop in organs, for example, kidneys and the heart, causing

amyloidosis, which can prompt serious issues of kidneys and heart. A few people

with Waldenstrm macroglobulinemia build up weakness and a loss of sensation

in the appendages resulting in fringe neuropathy. Specialists are unsure why this

character happens in patients, despite the fact that they theorize that the IgM

protein appends to the protective covering of nerve cells (myelin) and breaks it.

The harmed nerves cannot convey signals, prompting neuropathy [75].

Different features of Waldenstrm macroglobulinemia are because of lymphoplas-

macytic cells clusters in various tissues. For instance, aggregation of these cells

can prompt splenomegaly, hepatomegaly, or lymphadenopathy. The lymphoplas-

macytic cells interfere with the development of normal red blood cells in the bone

marrow, causing a deficiency of typical blood cells known as pancytopenia. Ex-

treme tiredness because of lessening anemia is basic in affected people. Individuals
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with Waldenstrm macroglobulinemia have an expanded danger of developing other

cancers of different tissues and blood [76].

2.1.4 Deregulated Molecular Pathways

P13k/Akt and MTOR Pathways: The PI3k/Akt pathway regulates the

survival of the cell, expanding proliferation of cell while repressing apoptosis [77,

78]. Furthermore, Akt action causes an increase in cell adhesion and migration [79–

81]. Numerous studies have discovered over-expression of Akt in WM [79, 82]. This

concurs with discoveries of PI3K pathway proteins over-expression. Constitutive

initiation of Akt pathway brings about cell resistance by restraining apoptosis,

maintaining cell cycle pathways, and supporting cell survival and proliferation

[82]. Both IL-6 and IGF-1 activates the Akt pathways and give strong targets

to therapy [79]. Recently, it was recommended that PTEN contrarily manages

this pathway In WM [83], however, no mutations of PTEN has been observed,

the expression of PTEN gene and protein are observed to be decreased, and it

is proposed that low levels of PTEN prompt steady activation of the PI3K/Akt

pathway. Additionally, PTEN adversely regulates the mTOR which, has increased

activation as that of Akt, because of phosphorylation in WM.

The original mTOR inhibitors rapamycin and it’s analog everolimus utilize a mech-

anism of allosteric inhibition to block the output of mTORC1 [84]. Stage II clinical

trials utilizing everolimus as a solitary treatment option for WM patients demon-

strated its high action, with a response rate of 70 percent and a medium toxicity

value [85]. Interestingly, second mTOR inhibitors focus on the ATP binding site

to hinder kinase action of both mTORC1 and mTORC2 (Figure 1) [84]. Another

promising inhibitor is NVPBEZ235 which targets both Akt and mTOR pathways,

effectively reverse the activation of both Akt and mTOR pathways and dually re-

presses these overexpressed pathways [82]. These studies give urging information

to the utilization of personalized treatment procedures to target overexpressed

pathways in WM. Targeting the mTOR prompts huge clinical activities in WM

patients up to 45 percent incomplete remission TORC1 inhibitor treatment [86].
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Though, patients did not have a total reduction in disease, which demonstrates a

resistance of TORC1 exists in WM [87]. Imperatively, these pathways additionally

give numerous targets to particular treatments, as shown in Figure 2.1 obtained

through [77].

Figure 2.1: PI3K/Akt/mTOR pathway obtained through Braggio et al., [77].
The pathway gives various targets to particular therapies. Drugs targeting the

pathway are represented by red boxes.

JAK/STAT Pathway: The Akt/PI3K pathway is over-expressed due to the

elevation of STAT5 proteins [88]. The JAK/Stat pathway is an important one

cytokine-initiated cascade that utilizes a few STAT proteins to accomplish bio-

logical and physiological functions, including hematopoiesis [89]. Loss of these

receptors and second level messengers can be deadly and has been demonstrated

to be extremely disrupting lymphoid and erythropoiesis movement. When consti-

tutively dynamic, cells show an expansion in anti-apoptotic genes, tumor evasion,

and cell cycle progression. Each of these features is noted in WM. Both the JAK1

and STAT3, initiated by IL-6, demonstrate over-expression in WM, in spite of no

known mutations in their individual genes [90]. The persistent investigation of
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these dysfunctional pathways in WM will help to give targets for treatments, as

shown in Figure 2.2 retrieved from [90].

Figure 2.2: JAK/STAT pathway activation due to cytokines induction by
Lucy et al., [90].

As the understandings with respect to the role of Jak/Stat signaling in cancer

has expanded, various small inhibitors compounds of Jak and Stat proteins are

being created. The adequacy of these molecules in WM isn’t known so far, yet the

administration of these inhibitors to patients with other hematologic disease has

indicated extraordinary assurity [91]. Beyond their probable clinical use in WM,

these inhibitors are likewise valuable apparatuses for looking at the connection

between cytokine-activated Jak/Stat signaling and immunoglobulin emission in

hematopoietic cancers. In the Waldenstrm’s cell line, BCWM.1, utilization of the

Jak inhibitors, JakI, totally block the IL-6 stimulated secretion of IgM [92]. This

information gives starting proof embroiling IL-6-driven Jak/Stat signaling in the

unnecessary emission of Ig and give more ways to look at the role of signaling

transduction of Jak/Stat in the secretion of IgM proteins in the WM.

Furthermore, because of the significance of the Jak/Stat pathway in interceding

cell development and endurance in response to the stimuli of cytokine, Jak-and

Stat-particular inhibitors have moreover shown noteworthy cytotoxic and antipro-

liferative properties in numerous kinds of malignancies [93]. Lower Ig secretion

results in decreased tumor weight, these inhibitor molecules in the treatment of



Literature Review 20

tumors secreting Igs, may end up being better than that of other drugs which

focus on either the Ig production or secretion. As different cytokines are asso-

ciated with controlling IgM production during hematopoiesis, there are chances

that various cytokines in the tumor microenvironment are necessary for keeping

up the elevated amounts of serum IgM protein normal to WM, and their personal

effects on tumor development [94].

Distinguishing proof of these cytokines and the activities of the particular Jak and

Stat proteins through which they intervene their belongings is a coherent initial

phase in seeing how the Jak/Stat pathway adds to the pathological process of

WM?. Clarifying the Jak/Stat role in signaling activity in WM will take into

consideration the improvement and choice of suitable targets on medicines for the

clinical assessment taken place so far [95].

TLR Signaling Pathway: The finding of mutations in MYD88 is of impor-

tance, demonstrating its activity as interleukin 1 receptor (IL-1R) adapter and

Toll-like receptor (TLR) signaling [96]. All TLRs aside from TLR3 utilize MYD88

to facilitate the process of their signaling. After the stimulation of TLR or IL-

1R, MYD88 is enrolled to the actuated receptor-complex as a homodimer, which

then makes a complex with IRAK4 and initiates IRAK1 and IRAK2 [97–99]. Tu-

mor necrosis factor receptor-related factor 6 (TNF-6) is then initiated by IRAK1,

prompting the activation of nuclear factor kB (NF-kB) through the phosphory-

lation of IkBa [100]. Use of inhibitors of MYD88 pathway prompted a decrease

in the phosphorylation of IRAK1 and IkBa and in addition the survival of WM

cells expressing MYD88 L265P. NF-kB signaling is critical for WM development

and survival [101]. In recent years, Yang and colleagues [102] demonstrated that

Bruton tyrosine kinase (BTK) was also activated by MYD88 L265P. Active BTK

co-immunoprecipitated with MYD88 that could be canceled by utilization of the

BTK kinase inhibitor and overexpression of MYD88 L265P. In addition, knock-

down of MYD88 by lentiviral transfection or utilization of an MYD88 homodimer

inhibitor in WM cells with MYD88 L265P mutation revoked BTK activation. The

process obtained through [103] is shown in Figure 2.3.
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Figure 2.3: TLR signaling pathway dependant on MYD88. It also triggers
NF-kB signaling through activation of IRAKs and BTK. Monoallelic losses in
TNFAIP3,HIVEP2, and MYBBP1A might intensify NF-kB signaling in several

patients of WM by Steven et al., [103].

2.1.5 Pathophysiology of Waldenstrom’s Macroglobuline-

mia

Hereditary investigation of the hypervariable region of antibodies from patients

having WM show that it creates from a post-germinal focus cell that has ex-

perienced physical hypermutation, perhaps affected by antigen choice. In this

manner, WM emerges from the cells which express IgMs that changes after sus-

pension of substantial transformation, however without starting switch occasions.

Some un-mutated monoclonal IgM can be found and may emerge through a T-

cell-autonomous system [104] The IgM monoclonal protein result in the elevation

of blood viscosity by making cluster with each other, they binds their carbohy-

drate components with the water through covalent bonding and started to interact

with the blood cells, thus, causing WM. The origin of WM is shown in Figure 2.4

obtained through [105].
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Figure 2.4: The origin of WM, explained by stone et al [105]

WM could emerge from a developed memory-like B cell of either peripheral zone

or germinal focus which does not experience downstream switching but rather can

obtain a lymphoplasmacytoid phenotype and capacity of IgM secretion

2.1.5.1 Hyperviscosity Syndrome

Side effects because of hyperviscosity happen in about thirty percent of patients

having WM and might be the showing indication. The side effects and signs

in patients with hyperviscosity disorder incorporate bleeding from mucosa and

skin, visual aggravated retinopathy, and a number of neurological issues, and rare

cardiovascular issues [106]. The fundoscopic exam demonstrates sausage in the

retinal veins. Extraordinary ophthalmologic studies can identify lesser degrees of

viscosity [107]. Serum viscosity is ordinarily 1.4 to 1.8 times as that of water at

37-degree centigrade. Hyperviscosity disorder is impossible except if the serum

thickness is over four centipoises (cp). However, the consistency level associates

intimately with signs and indications in a similar patient, to some degree because

of the scope of natural viscosity estimations of various Waldenstrm IgM proteins



Literature Review 23

[108]. The treatment for hyperviscosity disorder is plasmapheresis with or without

attending chemotherapy. Plasmapheresis will normally invert the signs of the

disorder and is especially compelling in macroglobulinemia on the grounds that

eighty percent of IgM is intravascular. It is essential to perceive hyperviscosity

disorder and treat it instantly

2.1.5.2 Cryoglobulins

Cryoglobulins are immunoglobulins that form a gel at temperatures under 37-

degree centigrade and re-breakdown at 37 degrees centigrade [109]. The stage

change is temperature-reliant and reversible. Single cryoglobulins in patients

having WM are because of the temperature-delicate insolubility of IgM and are

typically dependant on a specific concentration. Most blended cryoglobulins are

antigen-antibody complexes [110]. The cryoprecipitate is caused by the immune

complex. Cryoglobulins are critical in the pathogenesis of symptoms in patients.

The signs and symptoms may comprise of arthralgias, purpura, acrocyanosis,

cutaneous vasculitis, coldly affected indications, visual aggravations, and mu-

cosal bleeding. Once in a while, cerebral thrombosis, hepatosplenomegaly, lym-

phadenopathy, and renal malady, especially proliferative glomerulonephritis might

also be present [111].

2.1.6 Treatment Options for WM

Since WM remains a serious disease, the objectives of treatment are to reduce

symptoms and risk of end-organ harm. Treatment is generally necessary for

symptomatic patients and those with extreme cytopenias. Whenever possible,

clinical preliminaries ought to be considered for patients with recently analyzed

WM. Active drugs incorporating monoclonal antibodies (ofatumumab and rit-

uximab), nucleoside analogs (fludarabine and cladribine), alkylators (chlorambu-

cil, bendamustine, and cyclophosphamide), proteasome inhibitors (carfilzomib and

bortezomib), signal inhibitors (ibrutinib and everolimus), and immunomodulatory



Literature Review 24

drugs ( lenalidomide, thalidomide, and pomalidomide)[112]. Table 2.2 demon-

strates an outline of chosen clinical trials in WM, obtained through [32].

Table 2.2: Clinical trials of drugs, conducted for the WM, obtained through
the Oza et al.,[32]

Regimen Disease/Treatment status

Overall

Response

Rate

Complete

Response

Rate

Rituximab Untreated and Treated 52.2% 0%

Bendamustine Relapsed 90% 60%

Flludrabine Untreated 95.3 % 4.7%

Bortezomib Untreated and Treated 85% 0%

Thalamomide Untreated and Treated 64% 4%

Combined therapies, especially with rituximab, generally have been accessed for

the treatment of WM. several features, including the cytopenias, the require-

ment for faster illness control, autologous transplant treatment candidacy, and

age, ought to be considered in clinical settling on the decision of first-line ther-

apy. For patients who are the competitor for autologous transplant treatment,

subjection to constant nucleoside analog or chlorambucil treatment, ought to be

constrained, given the possibility for the stem cell damage. The utilization of

nucleoside analogs may likewise build hazards for histologic change to diffused

extensive B-cell lymphoma, myelodysplasia, and intense myelogenous leukemia

[112].

2.1.6.1 Monoclonal Antibodies

Rituximab is a basic monoclonal antibody, its target is CD20; an antigen which

commonly expressed on lymphoplasmacytic cells of WM patients. The utilization

of rituximab at authoritative measurement prompts fractional or better reactions

in around 27 to 35 percent of patients [113]. Individuals who received minor
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doses of rituximab are benefited by enhanced platelet counts, hemoglobin, and

lessening of splenomegaly as well as lymphadenopathy [114]. The median time

of failure of the treatment extends from 8 - 271 months. Studies assessing an

extensive rituximab plan comprising of 4 weeks course at 375 mg/m2 per week,

with an additional 4-week course after 3 months, have exhibited higher significant

Response rates (RR) of 44 to 48 percent, with time to the progressions estimation

surpassing 29 months [115, 116].

Ofatumumab is a completely refined CD20-coordinated monoclonal antibody tar-

geting the small loop of CD20, an epitope that is not the same as rituximab. A

general reaction rate of 59 percent was seen in a progression of 37 symptomatic

WM patients after the administration of Ofatumumab [117].

2.1.6.2 Alkylating Agents

Orally used alkylating drugs, when used as single and in a combined treatment

with steroids, are being broadly assessed in the forthright treatment against WM.

The best involvement with oral alkylator treatment has been with chlorambucil,

which is given on both a constant day by day dosage and also an irregular dose

schedule. Patients who receive chlorambucil daily get 0.1 mg per kg dose per day,

though the patients who receive chlorambucil irregularly get 0.3 mg per kg, seven

days, for six weeks [118]. Extra factors to be considered in chlorambucil treatment

for patients having WM, incorporate the need for more quick control of ailment

show slow reaction to this medication and thought for preventing the stem cells in

patients who are the possibility for autologous transplant treatment. Chlorambucil

should, accordingly, be given to patients who are nontransplant competitors with

more indolent sickness [119].

The combination of doxorubicin, prednisone, vincristine, or cyclophosphamide, -

(CHOP) with rituximab (CHOP-R) was examined in irregular examination by the

German Low-Grade Lymphoma Study Group including sixty-nine patients, a large

portion was suffering from WM. The expansion of rituximab to CHOP brought

about a response rate up to 94 percent and an average time of progression is 22



Literature Review 26

months in contrast with patients who received only CHOP. Basic features were

comparable for age, bone marrow association, earlier treatments, platelet number,

hematocrit, and serum b2-microglobulin, despite the fact that high level of serum

IgM levels were observed in patients who received CHOP-R treatment [120]. Ex-

amination of unfavorable occasions for these dosage designs demonstrated more

chances for neutropenic fever and, in addition, treatment-related neuropathy in

patients getting CHOP-R These examinations propose that for the treatment of

WM, the utilization of doxorubicin and vincristine might be reduced to limit com-

plexities related to the specific treatment. Along these lines, more extraordinary

cyclophosphamide-based dosage, such as CHOP-R, ought to be minimized [121].

Bendamustine is newly approved by food and drug administration (FDA) for the

treatment of lethargic non-Hodgkin lymphoma. Bendamustine has high structural

likenesses to both purine analogs and alkylating agents [122]. The utilization of

bendamustine along with rituximab was investigated by Rummel and associates

[123] in the treatment of WM. As a major aspect of a random report, patients

got six cycles of combined bendamustine-rituximab (Benda-R) or CHOP-R. An

aggregate of five hundred and forty-six patients were enlisted in this examina-

tion including inactive non-Hodgkin lymphoma patients along with forty patients

suffering from WM.

Patients in the Benda-R got bendamustine at 90 mg per m2 for 2 days and ritux-

imab at 375 mg per m2 for a single day with the recurrence of a month for each

cycle. The response rate was 96 percent for Benda-R and 94 percent for CHOP-R

treated patients. Having a median perception time of 2 years and 2 months, 20 out

of 23 Benda-R versus 9 out of 17 CHOPR treated WM patients stay free of dis-

ease. Benda-R was related to a lower rate of 3 or 4-grade neutropenia, irresistible

intricacies, and alopecia [124]. However, treatment was very much endured in

this investigation, delayed myelosuppression happened in patients who got earlier

nucleoside analog treatment. Cytoreduction, including extramedullary sickness,

is especially better with bendamustine-based treatment and can be assumed in

patients with splenomegaly, adenopathy or symptomatic extramedullary illness.

Therefore, large number of survived patients were observed after treatment.
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2.1.6.3 Nucleoside Analogs

Both the cladribine and fludarabine have been assessed in untreated and also

already under treatment patients of WM. Cladribine managed as a solitary med-

ication by intravenous infusion, for two hours every day implantation or by sub-

cutaneous bolus infusions for approximately 7 days has brought about response

rate range from 38 - 54 percent [125–128]. The general response rate with day by

day infusional fludarabine treatment regulated for the most part, on 5-days plan

in patients of WM has gone from 30 - 40 percent. Myelosuppression normally

happened after the delayed presentation to both of the nucleoside analogs, as well

as lymphopenia with the supported exhaustion of both CD41 and CD81 T lym-

phocytes present in WM patients after the one-year of the inception of treatment.

Treatment-related fatality rate because of myelosuppression or potentially sharp

diseases owing to immunosuppression happened in up to five percent of every pa-

tient who received the therapy in some cases with either of the nucleoside analogs

[129–131].

The efficacy of nucleoside analogs is subjected to examination for a few years.

Thomas and colleagues [132] have announced their encounters in reaping stem cells

in twenty-one patients with symptomatic WM in whom the collection of autologous

peripheral blood stem cells was done. The study succeeded in 99 percent of patients

who got non-nucleoside analog based treatment versus 33 percent of patients who

got a nucleoside analog. The long haul safety of nucleoside analogs in WM was also

inspected by Leleu and colleagues [133] in an extensive study of WM patients. A 7

times increment in a change to a fast-growing lymphoma and a 3 times increment

in the improvement of intense myelogenous leukemia/myelodysplasia were seen

among patients who got a nucleoside analog versus different treatments to cure

the WM.

Recovery from Acute myeloid leukemia were observed in half of the patients uptill

five years after treatment, with normal survival rate of 10 percent, but in some

cases, the patients started to experience symptoms soon after closing treatment of

nucleoside analogs.
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2.1.6.4 Proteasome Inhibitors

Bortezomib has been broadly researched in WM. In several investigations of the

WM, twenty-seven patients got up to eight cycles of bortezomib at 1.3 mg per

m2 on 1, 4, 8, and 11 days. [134] 1 patient was suffering from refractory/relapsed

illness. After treatment, average serum IgM levels reduced from 4660 mg per dL to

2092 mg per dL with a P ¡ 0.0001. The overall response rate was 85 percent, with

13 patients accomplishing a minor response and significant response, separately.

All the responses were immediate and happened in the middle of 1.4 months. The

average time to the movement for all reacting patients in this examination was 7.9

months, and the most widely recognized grade III or IV toxicities happened more

noteworthy than half of the patients, 22 percent tactile neuropathies, 14.8 percent

neutropenia, 18.5 percent leukopenia, 11 percent unsteadiness, and 7.4 percent

thrombocytopenia. Significantly, tangible neuropathies settled or on the other

hand enhanced in almost all patients after discontinuance of the treatment. As a

feature of a National Cancer Institute of Canada study, Chen and partners [135]

treated twenty-seven patients including both the previously treated and untreated.

Patients in another examination got bortezomib, utilizing the standard dosage

procedure, they exhibited dynamic infection. The overall response rate in this ex-

amination was seventy-eight percent, with significant reactions seen in forty-four

percent of patients. Tactile neuropathy happened in 20 patients, after 2 to 4 cycles

of treatment. Among the patients building up a neuropathy, fourteen patients set-

tled and 1 illustrated a change in tumor grade after 13 months. Nonetheless, these

encounters with bortezomib monotherapy in WM, Dimopoulos, and partners [136]

found the significant response rates in 6 of 10 percent already 60 percent treated

WM patients. The combination of bortezomib, rituximab, and dexamethasone

(BDR) has been examined as an essential treatment in WM patients. An overall

response rate of 96 percent was seen with BDR [137]. The rate of grade three

neuropathy was 30 percent in this investigation, which was utilized two times per

week plan for bortezomib at 1.3 mg/m2 [138]. However, Bortezomib treatment

showed promising results in other types of lymphoma.
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Bortezomib often produces serious treatment associated fringe neuropathy in WM,

the scientists examined the utilization of carfilzomib, proteasome-inhibitor to pre-

vent from neuropathy, in mixture with rituximab and dexamethasone (CaRD) in

symptomatic WM patients [139].

2.1.6.5 Immunomodulatory Agents

Thalidomide has been inspected in WM as monotherapy and also in the mixture

with clarithromycin or potentially dexamethasone. Dimopoulos and colleagues

[140] found a noteworthy response rate in 25 percent of patients who got a single

dose of thalidomide. Low dosages of thalidomide with oral dexamethasone 40 mg

dose once per week and 250 mg clarithromycin orally two times every day have

been inspected, with 83 percent of patients exhibiting a noteworthy reaction [141].

Pomalidomide was also examined in a dosage regimen stage 1 with rituximab.

[142] Patients indicated intolerance to the dose over 1mg, and rituximab increase

prompted symptomatic hyperviscosity and new plasmapheresis in 3 of 7 patients.

The general response rate was 43 percent.

2.2 Drug Resistance in Waldenstrom Macroglob-

ulinemia

Treatment choices for WM incorporate alkylating agents, nucleoside analogs and

rituximab as a single agent or in combination. However, these methodologies result

in low clearance rates and short span of treatment survival in many occurrences.

Besides, no particular drug has turned out to be better than others and, also, no

treatment has been explicitly endorsed for WM. Thusly, new ways to deal with the

treatment of WM are required. With an end goal to accomplish this, researchers

have sought after targeted treatments, for example, bortezomib to cure WM, but

this inhibitor also unable to cure WM properly because of Resistance due to certain

unknown mechanisms [143].
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2.3 Biomarkers Identification

Hulka and colleagues [144] first time defines the Biological markers also known

as biomarkers as a biochemical, cell, or molecular changes that can be measured

in biological media, for example, human fluids, cells, and tissues.” Recently, the

definition has been widened to incorporate biological characteristics that can be

estimated and assessed as a pointer of biological processes, pharmacological reac-

tions, or pathogenic procedures to a therapy intervention [145].

Generally, biomarkers incorporate the technologies and several tools that can help

in understanding the cause, symptom, analysis, prediction, progression, or out-

come of disease treatment. Biomarkers of all types have been utilized by the

doctors, epidemiologists, and researchers to understand several human infections.

The use of biomarkers in the diagnosis of a cardiovascular ailment, immunological

and hereditary disorders, cancer, and infections are well-known [146]

There has been expanding proof that several kinds of cancers are exceedingly het-

erogeneous as in related somatic genes or different particles may vary in various

patients which brings about various cancer subtypes with changing behavior, in-

cluding different reactions to drugs, diverse rates of survival time, and distinctive

recurrence rates [147–152].

The major critical issues in cancer informatics are tumor grading, where the objec-

tive is to discover the subtypes of tumor in a diverse populace of samples, discover-

ing applicable subtypes, one other significant issue is to distinguish the biomarkers

(genes or proteins) identified with each subtype with the end goal of customized

treatment and prognosis. As a large number of gene or protein based Biomarkers

have been identified for several types of cancer including liver, breast, thyroid,

colorectal, ovarian, pancreatic cancer, melanoma, and several types of Leukemia.

Therefore, instead of supervised learning for already proposed biomarkers identifi-

cation methods, in this dissertation, the point is to locate the resistant biomarkers

of WM against bortezomib profiling that better discriminate the outcome of drug

response in an unsupervised manner where the causes of resistance are unknown.
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2.3.1 Types of Biomarkers

Perera and Weinstein classified biomarkers into different types on the basis of

a series of events from exposure to disease. There are two significant types of

biomarkers: Anticident biomarkers, which are utilized to predict the risks, and

biomarkers of illness, which are utilized in screening, determination, and to study

the progression of a disease. In this study, we have been focused on the biomarkers

of illness, which are causing the resistance to Bortezomib treatment in WM.

2.3.2 Biomarkers of Illness

Biomarkers allow pre-determination of disease or take into consideration the con-

dition, important to be resolved at an earlier stage of the disease. They give im-

portant information for diagnosing infections. Biomarkers are utilized as a pointer

of a biological factor that shows either a sub-clinical appearance, a surrogate in-

dication of the disorder, or stage of the disease. Biomarkers utilized for screening

or analysis usually show signs of the infection [153]. The significant uses of this

class of biomarkers include:

1. Identification of patients having more chances to be affected or who are in

the pre-clinical stages of the disease.

2. Lessening of the disease heterogeneity in epidemiological studies or in clinical

trials.

3. The impression of the common history of disease incorporating the induction

phases, dormancy, and detection.

4. Target for clinical trials.

2.3.3 Drug Resistant Biomarkers

Drug-resistance and Metastasis are real obstacles in the treatment of several can-

cers. More consideration is required in unraveling this area of cancer, keeping
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in mind the end goal to produces more compelling treatments. In an examina-

tion, Goswami [154] has found the biomarkers that are resistant to chemother-

apeutic medications. Distinguishing proof of molecular biomarkers for both the

drug-resistant and invasive cells in the primary tumor opens another vista in the

diagnosis of cancer. These resistant biomarkers also distinguish new pathways

for helpful mediation which can be valuable to traditional therapies, meddling

with the progression of tumor at few points. Biomarkers can anticipate the in-

trusive and drug-resistant tumor cells in light of an aberration in their expression

level after treatment to specific medication [154]. So also, Li et al [155] have dis-

tinguished drug-resistant biomarkers in Leukemia K562/ADM cells, by utilizing

nanoparticles as a new procedure to hinder multi-drug resistance in targeted tu-

mor cells and as a delicate technique for the determination of specific tumors at

early stages. In oncology, the resistant biomarkers are divided into predictive and

prognostic biomarkers. Prognostic biomarkers give knowledge about the overall

outcome of patient’s tumor such as prostate-specific antigen (PSA), whereas pre-

dictive biomarkers can be utilized to calculate the reaction of a specific patient to

a particular therapy, for example, the expression level of human epidermal growth

factor receptor 2 (HER2) as an indicator of reaction to trastuzumab treatment

[156].

2.3.4 Techniques for Biomarkers Identification

Biomarkers can give information on pathogenic procedures and pharmacological

reactions for a helpful intervention. The recognizable proof of biomarkers for

clinical analysis is one of a few fascinating topics in medicinal research. Despite

the fact that estimations relating to biomarkers have been generally applied in

the clinical procedures, distinguishing important biomarkers for clinical diagnos-

tics in light of data-rich natural information is challenging [157]. To distinguish

biomarkers, distinctive methodologies for selection of specific features required for

a biomarker, for example, support vector machine recursive feature elimination

[158], random forests[159], and genetic algorithms [160] have been broadly applied
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[161]. These strategies select specific features in light of expression level among

distinctive classes rather than feature relationship changes.

A feature is critical in the sense that it has an amazing effect on others. Since

molecules are related to each other and show interaction among themselves, investi-

gating changes in the interaction to get a detailed understanding of the mechanism

of disease has gained expanding consideration [162, 163]. Consequently, breaking

down the biological information from a network point of view could be a superior

procedure for finding key biomarkers and encouraging the investigation of diseased

phenotypes [164].

Distinctive network development and investigation strategies have been proposed

to extract information from the disease data. Pearson correlation coefficient which

measures related feature associations has been generally used to build the networks

[165], and the center points (hubs) are held as key elements. Krumsiek et al [166]

utilized the partial correlation coefficient to develop networks containing biological

information. In metabolomics, a proportion could be assigned as the pathway

response in which one metabolite is changed over into another metabolite by means

of single or different response pathways.

Hence, Netzer et al. [167] developed a network in light of the matched biomarker

identifier estimations of the metabolite proportions. PinnacleZ [168] connected

common data to ascertain the discriminative capacity of the network. Diagram

based iterative gathering investigation [169] positioned the features in the network

and distinguishes the enlightening sub-networks in light of the p-value ascertained

utilizing the positions of the specific features. Other proficient strategies exist, in-

cluding a two-advance module cover [170] and condition-particular networks [171].

Palaniappan et al. [172] use strategies for network analysis to recognize novel

biomarkers of the progression of colorectal malignancy on each stage.

In the present study, we utilized a computational method that defines potential

resistant biomarkers of Bortezomib based on centrality analysis. It explores the

hub nodes in the networks as key biomarkers of resistance.
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2.3.5 Network-based Biomarkers

At the present time, a considerable measure of molecular networks has been con-

structed, including protein-protein interactions networks (PPINs), gene regulatory

networks, metabolic networks, miRNA-gene interaction, etc. These molecular net-

works can be depicted as diagrams, where the nodes, refer to the molecules while

the edges show the interactions [173]. Since these networks can depict different

sorts of useful interactions among molecules, they are broadly utilized for recog-

nizing biomarkers. In general, a network can be portrayed as a graph G(V, E),

where V is the arrangement of nodes and E represents edges showing useful in-

teractions [174]. In a network, aside from its own particular expression values,

the significance of every node can be depicted by its topological properties. For

instance, the nodes with high degrees are usually viewed as essential and have

critical effects on different nodes in the system, where the degree of a node is the

number of different nodes it associates within the network. In complex network

systems, the nodes with most noteworthy degrees are called hub nodes [175].

Besides the degree, alternate types of centralities of a node are additionally broadly

used to determine its significance. Among various kinds of centralities, between-

ness is the most generally utilized, which is characterized as the number of the

shortest paths from the node of interest to other connecting nodes in the net-

work. Ozgur et al. positioned all genes in prostate cancer as for their topological

attributes and found that betweenness yielded the most astounding exactness in

ranking the genes associated with prostate cancer [176]. The identification of

biomarkers is vital for developing precision pharmaceutical. Nonetheless, it is a

troublesome task to create biomarkers with high exactness and power considering

the complexity and variability of biological systems among patients [177, 178].

The molecular networks that depict the useful interactions among genes give a

worldwide perspective of the complex natural systems. By studying these net-

works, the information about molecular mechanisms can be obtained. Numerous

computational methodologies have been used to recognize biomarkers that can be
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utilized. However, the drug-resistant biomarkers can also be determined by using

the same methodologies of developing interaction networks [179, 180].

2.3.6 Application of Biomarkers

In clinical settings, the endpoints are the most tried attributes to accomplish

the aftereffect of medical intervention and should be supported over surrogate

endpoints. In some clinical settings the endpoints, for instance, survival requires

long recognition time and patients number in clinical preliminaries to be accessed.

This is impossible in a number of areas and renders the clinical advancement of

new medications inefficient. There is a great need for such endpoint endeavors to

increase the drug discovery process [181]. In spite of the fact that it is attractive

that a biomarker, in the long run, turns into a surrogate endpoint, a biomarker

that can’t replace might be of remarkable motivation in drug advancement and

change process in the patient care. A quantifiable difference in a biomarker in

light of a pharmacological procedure may fill in as a proof-of-idea (POI) in early

times of drug improvement.

This is significant knowledge when, for instance, a decision should be taken for a

few hopeful drugs. Usually in pre-clinical testing of animals if there is an existence

of biomarker in species other than humans. However, most of the medications fol-

low up on receptors or physiological structures independent of disease, exist in

patients, In volunteers, POI studies can give vital information. For instance, an-

other anti-hypertensive drug that does not lessen the blood pressure of patients

will most likely not be viable in hypertensive patients. Coordinating assessable

biomarker data into a PK/PD model encourages basic decision making in regards

to the dosage choice and preliminary plan or end of a project because of poor

biomarker response. In clinical practice, doctors have been effectively utilizing

biomarkers to manage individual treatment, for example, a globally standard-

ized proportion for the oral treatment by anticoagulants, insulin treatment for

blood-glucose for quite a long time, for decades, numerous of them don’t act as a
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biomarker [182]. The capability of biomarker-guided treatment is amazing both

for existing drugs as well as drugs which will be produced later on.

2.3.7 Tools and Software used for the Network-based Bio-

markers Analysis and Discovery

Network analysis has been done to identify several pathways and biomarkers as-

sociated with the diseases. Network-based biomarkers have not just effectively

been used for the identification of metastatic versus non-metastatic tumors, yet

in addition, exhibited higher reproducibility of networks as compared to individ-

ual biomarker distinguished by traditional methodologies. The regular method to

translate and contextualize these biomarkers is with Kyoto Encyclopedia of Genes

and Genomes (KEGG) [183], network-based enrichment Gene Ontology [184], and

other comparative methodologies. This sort of examination focus on the functional

relationship of markers. The network-based examination is an advanced technique

of system biology, used to interpret large omic datasets [185]. By considering the

cross-talk of different pathways, network modeling permits a more extensive inves-

tigation of a perplexing framework than the pathway-driven methodology. It has

been demonstrated that system topological properties can be used for organizing

candidate genes and anticipating novel competitor biomarkers [186], and modular-

ity analysis could separate significant sub-networks identified with the considered

infection.

Accordingly, the network-based examination has assumed to be an expanding job

in current biomarker disclosure and drug discovery. A lot of tools and software

are available for network analysis. A few programs center around the graphical

representation of the network, while others include computational abilities, for

example, clusters identification and modularity, helping in the elucidation of the

biological functions hidden the unpredictable networks. The most popular among

them are shown in Table 2.3.
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Table 2.3: List of Tools and Software used for Network-based Biomarker Iden-
tification

Tool Working Limitations Reference

Cytoscape

Visualize biological
pathways and molec-
ular networks, Build
PPIN, GRN, retreive
biological pathways
etc.

Does not provide 3D
representation, does
not analyze complex
networks

[187]

visANT

performs visual min-
ing of biological net-
works, takes data from
Genebank, SwissProt,
and KEGG

Can’t run on windows
based systems, unable
to integrate data from
external sources

[188]

PINA

Studies interaction of
proteins at network
level, analyze intrac-
tomes and pathways

Can not build networks
for all organism, only
use six model organ-
isms

[189]

atBioNet

Performs network
analysis of genes and
or proteins, inte-
grates data of 7 PPI
databases

only performs specific
network analysis of hu-
mans, not all species

[190]

Gaphi

Visualize and analyze
networks by modu-
larity and centrality,
able to develop more
complex networks and
pathways, differentiate
network components
in different colors
through modularity

Unable to show large
networks clearly due to
small interface

[191]

BioPlat

Predicts novel cancer
biomarkers by network
mining, analyze gene
expression data

Requires extra plugins,
so take more memory

[192]

Mist

Integrates the data
from gene mining
and built protein
interaction networks

Does not generate di-
rections in the network

[190]

GeneMania
Provides networks of
physical and genetic
interactions

It is online [185]
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2.4 Pharmacokinetic-pharmacodynamic Model-

ing and Simulations

Dost presented the ideas of Pharmacokinetics in his 1953’s book Der Blutspiegel

- Kinetik der Konzentrationsablufe in der Kreislaufflssigkeit [193] after that, Nel-

son provided the explanation of four kinetic components, absorption, distribution,

metabolism, and elimination in an global science journal in 1961 [194], the signifi-

cance of pharmacokinetics was perceived in the territory of clinical pharmacological

medicine. Nelson made a broad reference Toerell’s work (1937) first depicted the

action of xenobiotics in the body of human with scientific conditions [195]. These

ideas are the premise of present-day pharmacokinetic (PK) data analysis based on

the designed models.

Pharmacodynamic (PD) models are regularly based on the law of mass action or

Langmuir’s law of adsorption-desorption, later on, Ariens [196] and Stephenson

[197] reformulated them for the instance the binding of antagonist with receptor.

Central models of pharmacological reaction in connection to drug fixations were

studied by Holford and Sheiner underscoring the significance of quantitative pre-

dictions of the effects of several drugs on human [198]. One of those fundamental

PD models is the Emax, where a hyperbolic work relates a proportion of drug

induction, such as blood fixation, dosage, and area under the curve (AUC), to

some proportion of pharmacological reaction.

Most generally utilized numerical models to portray the time course of drug con-

centration in the plasma or blood are the mamillary compartmental models, where,

the body of human is designed to an arrangement of associated compartments

with the input and output in the form of the drug from a central compart-

ment. These models could be depicted as frameworks of differential equations

or poly-exponential terms. Numerous alterations to this basic model, for exam-

ple, saturable elimination or delayed absorption have been portrayed, exhibiting

its adaptability [199]. The variation of beneficial pharmacodynamic models is

quite complex, difficult to design and implement, simulate and understand, hence
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gigantic, running from straightforward linear models to complex robotic models

depicting the gene or receptor intervened effects of corticosteroids [199].

In general PK/PD models, the drug amount in the dose compartment enters

through the central compartment having a rate constant ka. It is distributed

into the compartment and elimination of the drug from the central compartment

is usually represented by Clearance rate constant or elimination rate constant.

The differential equations are then built explaining the processes of absorption,

distribution, and elimination.

2.4.1 PK-PD Modeling Techniques

A basic area of model-based examination of data is the model parameters evalua-

tion by nonlinear regression. A wide range of calculations and estimation methods

have been produced for the reason to fit some numerical functions to a given data

of perceptions [199]. The most generally utilized strategy is the maximum likeli-

hood estimation, given by Fisher in the middle of 1912 and 1922 [200]. Several

optimization algorithms such as Gauss-Newton, Levenberg-Marquardt are also

connected with models to discover the work by iteratively changing the estimation

of the model parameters. Throughout the years NONMEM has turned into a most

generally utilized programming tool for PK/PD modeling.

As compared to non-model methods, the models-based methods utilized for the

modeling of data can give extra understanding into the drug behavior in an in-

dividual or in a populace, their quality lies in their capacity to make predictions

of unstudied circumstances and consider the possible situations. Imperative in-

quiries like: How might a patient’s reaction to a change in treatment if there is a

decrease in renal capacity? or could extra advantage be gained by giving a specific

drug twice a day in several cycles, instead of once per day? through the simula-

tions results. In recent decades, the approaches of modeling and simulation have

been progressively used in clinical and preclinical research and therapies and has

inevitably changed into a complete discipline
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It progressively used in clinical and preclinical research and therapies and has in-

evitably changed into a complete discipline Pharmacometrics - the investigation

of quantitative pharmacology [201]Pharmacometrics - the investigation of quanti-

tative pharmacology [201].

Drug design and discovery are ruled by the utilization of thermodynamic param-

eters, for example, Ki or IC50 values to choose and improve the lead candidates.

These measurements are utilized to anticipate in vivo drug pharmacodynamics

(PD) in view of the presumption that there is an equilibrium in drug and its tar-

get [202]. However, the concentration of drug at its target site is not constant

because of dynamics, for example, absorption, distribution, metabolism, and elim-

ination, and in this manner dug and target are probably not going to be at balance

[203–206]. Instead, the overall description of drugtarget binding requires the con-

sideration of drugtarget energy which can be utilized to better foresee changes

in drug activity which are dependant on time[207–211]. This has prompted the

improvement of mechanistic PK/PD models that incorporate the on and off rates

for the drug-target binding, In the present work, we have used the mechanistic

PK/PD model to quantitatively correlate the response rates of bortezomib with

different drugs.

2.4.2 PK/PD Modeling Applications in Drug Development

Modeling and simulations are basic devices in this area and affirming idea and have

a large number of applications. PK/PD models created on informations from ex-

perimental investigations allow the examination of maximum valuable dosages.

Information from huge investigations can be utilized to distinguish several char-

acteristics of patients affecting the dose-concentration-response relationship. The

models are then used to In future clinical preliminaries can be design by reproduc-

ing outlines of diverse trials in these models with a specific end goal to distinguish

the one with the most astounding likelihood of achievement [212]. Characterizing

ideal testing times for concentration and response estimations between such trials
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supplements this technique [213]. Fundamentally, the data picked up with model-

ing and simulations allows to make decisions on whether and how to proceed with

the improvement of another drug, with less space for abstract experimentation

and thinking. Modeling strategies are useful at any phase of the drug develop-

ment procedure [214].

Concentration-time profiles in people can be anticipated with physiologically-based

PK models, combining in vitro data and preclinical studies on animals. PK/PD

models are utilized for the estimation of the primary dose of high-hazard drugs

in people such as monoclonal antibodies [215]. Estimations of response such as

biomarkers in clinical trials phase 1 studies in volunteers give the primary knowl-

edge into the concentration-response relationship of medication in people and are

hence refined patients study data. The capacity of models to be updated with

recently arriving data, the spread of learning from one stage to the next, is an

alluring feature for this approach. Mandema et al., assessed the potential advan-

tages of lipid-lowering drug gemcitabine over the contender ezetimibe, utilizing

simulations from a PK/PD model created with accessible data from the litera-

ture [216]. the benefits of modeling and simulations have also been confirmed

by both the academia and pharmaceutical industries [217] and from the admin-

istrative perspective [218]. A noteworthy administration counseling organization

issued a business proposal on PK/PD modeling and simulations entitled Pharma

2020: Virtual R and D [219], supporting the significance of this approach for the

proficient development of creative drugs later on.

2.4.3 Applications in Personalized Treatment

Several drugs are available in the market showing that a similar dose ought to be

similarly successful for each person, from the youth to aged one. Their utilization

in such non-typical patient populaces is basically not prescribed because of the

absence of detailed knowledge, anticipating these patients to profit by the drug or

leaving the choice on the suitable dose to the doctor, without direction [220]. This

is due to lack of learning of the dose-response relationship, yet more imperatively in
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light of the fact that conventional drug development programs have been centered

excessively around finding a dosing regimen that is basic and simple to use for

doctors and patients [221]. Dosage individualization depends on characteristics

of patients like body weight, age, or function of an organ such as clearance of

creatinine from the body [222].

Population PK/PD modeling can be utilized to distinguish such attributes. Dosage

changes in view of the event of symptoms, the absence of an effect, a biomarker

estimation, or drug concentration are often done in clinical practice, despite the

fact that it may not be expressed unequivocally in the medication’s mark. These

individualization dosage techniques could enormously profit by PK/PD models,

directing dosage modification instead of abandoning it to experimentation. With a

PK model, individual PK parameters such as the drug clearance of a patient can be

determined by utilizing Bayesian estimation. The Bayesian technique consolidates

information of the PK attributes of a drug in a populace and individual patient

data in the form of body weight, plasma fixations and so on. With a specific end

goal to estimate individual PK parameters. Knowing the individual drug clearance

(CLint) rate, for instance, allows estimating the dosage regimen to get a predefined

target concentration [223]. A PK/PD model could be used to ascertain the drug

concentration that accomplishes the desired response of biomarkers in a patient,

not just accounting for PK changes between patients, yet in addition for variety

in the pharmacological reaction.

In the light of expanding interest for tailored therapies and personalized medicines,

PK/PD-guided concentration individualization may get attention and many other

techniques like this will be formed in near future [224].

2.4.4 Tools and Software used for PK/PD Modeling and

Simulations

Evaluations of the PK/PD attributes are an indispensable part of the development

of therapeutic agents and proteins. As compared to the small drug molecules,
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remedial proteins have numerous particular PK/PD characteristics that require

the utilization of altered or separate methodologies for identifying their PK/PD

results. A number of PK/PD tools are currently being used to support the process

of therapeutics development. Table 2.4 shows the most popular tools used for

PK/PD modeling

Table 2.4: List of Tools and Software used for PK/PD modeling and Simula-
tions

Tool Working Limitations Reference

Phoenix

7.0 PK/PD

calculates pharma-

cokinetics, pharma-

codynamics, and

toxicokinetics by using

PK/PD data, gener-

ates high resolution

graphics,

Run on Linux [225]

Simbiology

Matlab

Performs PK/PD anal-

ysis and simulate bio-

logical pathways, ana-

lyze systems dynamics,

Takes more than 16

GB of memory and

Matlab programing

language

[226]

PFIM

Evaluates population

design of drugs by

using non linear mixed

model

Only use fixed parame-

ters
[227]

PolyPK

Performs poly PK

analysis by using

metabolomic approach

and statistical analysis

requires R language

and run on Linux
[228]

gPKPDSim

Preclinical and transla-

tional PK/PD model-

ing

run on default parame-

ter values
[229]
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DoseSim

Access the efficacy and

safety of chemicals

and construct dosage

schedule

lack of user-friendly in-

terface
[230]

PFIM

Performs PK/PD

modeling on popula-

tion data

Not suitable for single

character data
[230]



Chapter 3

Material and Methods

The detailed flowchart of the applied methodology is shown below.

Figure 3.1: Detailed flowcharts literature survey for the identification of re-
sistant biomarkers and PK/PD modeling

45
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Figure 3.2: Detailed flowcharts of methodology applied for the identification
of resistant biomarkers
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Figure 3.3: Detailed flowcharts of methodology applied for PK/PD modeling
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3.1 Gene Expression Dataset

Gene expression profiling dataset of the clinical trials of bortezomib against WM,

having established WM cell lines BCWM.1, MWCL-1 and RPCI-WM1, includ-

ing their bortezomib-resistant subclones BCWM.1/BR, MWCL-1/BR and RPCI-

WM1/BR were obtained through the Mayo Clinic Florida. Mayo Clinic Jack-

sonville is the hospital located in Jacksonville, Florida. It is one of three grounds

alongside Phoenix/Scottsdale, Arizona, and Rochester, Minnesota. Groups of re-

searchers and doctors direct research with the objective of enhancing persistent

consideration. Their focus is to discover new and better approaches to antici-

pate, analyze, predict and ideally treat complex brain conditions, Cancers, and

other illnesses. Analysts work cooperatively in research facilities, on clinical trials,

and on epidemiological investigations to perform important discoveries for disease

treatment.

3.2 Ranking of Genes According to Resistance

Framing the level of resistance as the unit of investigation, to acquire the resistant

driver genes, we split the gene expression datasets of cell lines into three portions.

Each portion comprised of gene expression values ranging from 0-0.9 of one resis-

tant cell line and normal cell line alongside genes names list. To identify novel

driver genes, we calculated the absolute of difference between the gene expression

values of each normal cell line and its corresponding resistant cell line to find

out the genes which have changed their expression under prolonged exposure to

Bortezomib and named them as resistant driver genes. In a similar manner, we

obtained the resistant driver genes of the remaining portions of the dataset. It is

argued that the potential drug-resistant genes will undergo significant change in

their responses when subjected to an extended treatment of Bortezomib. To elim-

inate non-specific genes from the analysis, we screened each portion of the dataset

and selected only those genes whose absolute difference values were greater than
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or equal to the arbitrarily selected threshold value which happens to be 0.9 in this

case.

3.3 Novel Driver Genes Identification and Inter-

action Analysis

To find the co-expression and interaction of the resistant driver genes with each

other and other genes of the expression dataset, we submitted the resistant driver

genes lists of the first portion of the dataset into the FunCoup tool. FunCoup

(http://FunCoup.sbc.su.se) is a database of functional couplings, or practical

relationship, among the genes and their products. Recognizing these functions is

vital in the comprehension of the larger amount of functions performed by com-

plex processes of the cell. FunCoup recognizes four classes of genes interactions:

genes role in a similar signaling network, cooperation in the equivalent metabolic

process, co-enrollment in a complex of proteins and physical association [231]. We

found different sorts of interactions of the particular resistant driver genes: ’phys-

ical’, ’protein-protein interactions’ and ’genetic interactions. All the genes and or

proteins which demonstrate the certain level of interactions with the driver genes

were selected and considered as novel resistant driver genes. In a similar man-

ner, we obtained the novel resistant driver genes of the remaining portions of the

dataset. These novel resistant driver genes were used to build Networks for each

portion of the dataset.

3.4 Source and Targets Identification

The resistant driver genes set distinguished above were submitted to GeneMa-

nia tool to identify the source and target nodes, which yielded directed networks.

GeneMANIA (https://genemania.org/) is an adaptable, easy to use the web in-

terface for producing predictions about functions of the genes, analyzing the genes

http://FunCoup.sbc.su.se
https://genemania.org/
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set and organizing genes for practical measures. Given an inquiry list, GeneMA-

NIA expands the genes list with practically comparative genes that it recognizes

utilizing accessible genomics and proteomic information [232]. In a similar manner,

we obtained the source and target genes of the remaining portions of the dataset.

3.5 Network analysis and Identification of Po-

tential Biomarkers

The development and analysis of the networks were supported by Gephi [233]. The

degree distribution of each network was figured out and the integrity of fit with

a power-law distribution was resolved utilizing the coefficient of assurance (R2).

A high R2 of few genes demonstrate them as the central hub genes. Modification

of the abilities of these genes because of change, translocation or copy number

variation could bring about injurious genes harming cell development. To investi-

gate the structure of each network, we performed modularity analysis, Power-law

degree distribution test, and centrality analysis. Centrality analysis recognized

the central hubs in each system by different measurements. Four measurements

of centrality were used to rank the genes, viz. the between-ness centrality [234],

closeness centrality [235], Harmonic centrality [235], and Eigen-centrality [236].

The between-ness centrality was calculated by the formula shown in equation 1

C(v) =
∑

σ
sp(v)

σsp
(3.1)

where C(v) is used for the centrality, sp is the total number of shortest paths from

node s to node p and sp (v) is the number of those paths that pass through v. The

closeness centrality and harmonic centrality was calculated by the formula shown

in equation 2

C(v) =
n∑
d(x, y)

(3.2)
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where d(x, y) is the distance between vertices x and y and N is the total number

of nodes. The Eigen centrality was calculated by the formula shown in equation 3

Ceg(V ) =
1

λ
∑
avtxt

(3.3)

where avt is the matrix, and xt are constants. The modularity was calculated by

the formula shown in equation 4

M =
∑

[
i

E
− d

2E

2

] (3.4)

where E is the number of edges in the network, i represent the number of strongly

connected edges, and d is the degree of a node. These analyses were selected for

their estimation of the integral properties of hub gene significance. The genes

having higher values from each measure were picked to yield an accord set of

central genes for each stage. These are the ”hub” genes or potential resistant

biomarkers recognized in our work. A gene basic to each set is a driver and a hub.

3.6 Genes Enrichment Ontology

The experimentally validated biomarkers, identified through networks are submit-

ted to the Gene Ontology tool for identification of their molecular function. Gene

Ontology is the structure of the model of science. The GO characterizes ideas/-

classes used to portray gene functions, and connections between these ideas. It

characterizes functions along three viewpoints: molecular function, cellular compo-

nent, and biological process. The Gene Ontology analysis Consortium is available

at (http://www.geneontology.org/page/go-enrichment-analysis)

Gene ontology consortium retrieves the activities of genes performed at molecu-

lar level, cellular level, and also, calculates the biological processes performed by

genes to achieve the maximum number of activities a gene can perform, it also

characterize the genes according to eukaryotic or prokaryotic specie.

http://www.geneontology.org/page/go-enrichment-analysis
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3.7 Identification of Pathways Associated with

Resistant Biomarkers

The associated pathways for each resistant biomarker were identified through En-

richNet tool available at (http://www.enrichnet.org/). The benefit of Enrich-

Net is the analysis of genes set with known inclusion in human ailments, iden-

tification of new pathway affiliations and sub-interaction networks between their

protein products [237]. The identified pathways were further cross-validated by

the KEGG Mapper (https://www.genome.jp/kegg/tool/map_module2.html) is

the latest version of KEGG pathways where the set of genes or proteins can be

given and it returns their associated pathways and modules.

3.8 Implementation of PK/PD Model

The PK/PD model in the form of monotherapy and combination therapy PK/PD

was designed in the Simbiology toolbox of Matlab, the tumor growth model was

integrated with the mono and combination therapy PK/PD models collectively,

the tumor growth model used for the integration was suggested by Simoni et al.,

[238]. This model consists of several attributes that shift with the passage of time,

also the model describes the growth rate of the tumor without the administration

of drug and change in the tumor growth rate after the administration of several

drugs doses.

Four variants were set in the combination therapy PK/PD model in the form

of PK estimates of drug 1, PK estimates of drug 2, cell line 1, and cell line 2.

As our gene expression data consists of both normal and resistant cell lines and

each biomarkers network consists of genes from one normal cell line along with

its Bortezomib resistant sub-clone cell line, therefore, the cell line 1 and cell line

2 variants were created in the model. here in this study, PK/PD modeling was

done to access the effect of drugs on biomarkers individually as well as in the

http://www.enrichnet.org/
https://www.genome.jp/kegg/tool/map_module2.html
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combination. For the purpose of Combination therapy, PK/PD modeling the PK

estimates of drug 1 and 2 variants were created.

3.9 Parameters Estimation and Differential Equa-

tions Development

To determine the underlying processes of every component in the model, several

parameters are required to decide the reaction kinetics, reaction kinetics mech-

anisms, and the conduct of the model components [239]. The parameters of

the model were obtained through the study of Li et al.,[240]. The parameters

of drugs were obtained through literature. Five same class drugs - Rituximab,

Carfilzomib, Bortezomib, Oprozomib, and Ixazomib- were used for the PK/PD

modeling against biomarkers response.

The parameters for the drugs were retrieved through clinical PK profiles. The

important parameters considered for this study were molecular weight, EC50, and

dose [241–244]. All the parameters were estimated by ODE Solver(23) toolbox of

Matlab. For the estimation of parameters, the PK data of drugs were uploaded to

the PK compartment of the model and ’data fit’ function was performed through

non-linear least squares numerical function. Several ordinary differential equations

for the PK model, monotherapy PK/PD model, combination therapy PK/PD

model and tumor growth model were developed collectively.

3.10 Model Validation and Verification

Model validation is taken as a major aspect of the model design and development

process [245]. The validation procedure is attempted with the end goal to guar-

antee that the model created is adequately precise for the current reason [246].

Therefore, for this purpose, the clinical trials data in the form of a number of

patients, dosage regimens, and a number of cycles for the Rituximab, Carfilzomib,
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Bortezomib, and Oprozomib were retrieved through literature [247–251]. The data

were imported into the models consecutively and the model simulations were per-

formed. The simulations of models were compared with the clinical trials data of

drugs to validate our PK/PD model.

3.11 Pharmacokinetics-Pharmacodynamics Mod-

eling

The pharmacokinetics modeling is the use of pharmacokinetic standards to the safe

and successful restorative administration of medications in an individual patient.

An effect of the drug is frequently identified with its concentration at the site of

action, so it is valuable to screen this concentration [252]. Similarly, Pharmaco-

dynamic modeling depends on a quantitative reconciliation of pharmacokinetics,

pharmacological systems, and pathophysiological procedures for understanding

the time-course of medication effects and their intensity on the body. Use of such

models to the examination of important exploratory information takes into ac-

count the evaluation and prediction of drugbody interactions for both restorative

and unfavorable medication responses [253].

The PK/PD modeling was done for both monotherapies and combination ther-

apies. Their concentration in the central compartment and their effects on the

growth of tumor were determined to identify proper dosage regimens against the

resistant biomarkers of WM. The tumor growth dynamics were modeled because

subject variability is the most important characteristic of cancer. The change in

tumor growth was determined for each drug

3.12 Biological Verification

Computational models are just reflections of the natural biological phenomenon

and in this manner should be approved before they are utilized for real life or
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natural applications. To guarantee the dependability and vigor of a model the

approval methodology ought to be depicted in a reproducible way, the purpose

behind which standard documentation or general rules could be conceivably help-

ful. There is no particular method for validating the models in biological or in

different fields. The procedure is the equivalent all over sciences, several numeri-

cal measures are used to predict the accuracy of model [254]. Keeping this thing

in mind, the simulations results of PK/PD models were biologically verified by

their comparison with the clinical PK/PD results of selected drugs available in

literature [247–251].

3.13 Modeling of Biomarkers Expression Level

in Response to Particular Drugs

For modeling the response of biomarkers against specific medicines, the biomarkers

interactions model was developed and drugs doses were induced into the model

to predict the change in expression level of each biomarker collectively. All the

Parameters of biomarkers were identified through the obtained gene expression

data and estimated through the ODE solver nonlift- lease square method.



Chapter 4

Results and Discussions

4.1 Identification of Driver Resistant Genes

The WM cell lines dataset consisted of total 34683 genes and proteins, among

which many genes and or proteins are predicted and not validated experimen-

tally. However, among the cell lines dataset, Six-cell lines represent Bortezomib

drug response values. Among these established WM cell lines three were normal:

BCWM.1, MWCL-1 and RPCI-WM1 and three were bortezomib-resistant sub-

clones: BCWM.1/BR, MWCL-1/BR and RPCI-WM1/BR. Considering the issue

of resistance against Bortezomib, we tried to identify the resistant driver genes

from cell line data to find the potential biomarkers for WM. Only those genes

were selected as resistant driver genes whose absolute values were lying in the

range from 0.90-0.99. A disease driver gene is characterized as one whose muta-

tions increases the net cell development under the particular micro-environmental

conditions that exist in the cell in vivo. The aggregate number of driver genes

is obscure [255], Keeping this phenomenon in mind, we gave the name resistant

driver genes to our identified genes. Table 4.1 demonstrates the number of driver

genes identified at first progression of our screening methodology.

56
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Table 4.1: The resistant driver genes identified in each portion of the dataset

Cell Lines:

BCWM.1/BR and

BCWM.1

Cell Lines: RPCI-

WM1/BR and RPCI-

WM1

Cell Lines: MWCL-

1/BR and MWCL-1

PELI2 HS.572121 YAP1

ACP5 GALNTL4 ZNF256

LOC646084 HS.514454 LOC643612

ERCC-00076 LOC389105 LRRC31

CCDC48 LONRF1 HS.563400

PGLYRP1 JMJD2A DPYS

LOC647190 MT1M LRRN3

LOC653257 HS.336593 PALLD

SH2D7 CUEDC1 AGMAT

SMOC2 HS.540022 SYNJ2

MIR513A2 MAOB LOC647089

LOC100132923 LOC652542 LOC646064

CATSPERB XDH KRT39

SLC46A2 LOC283050 HIST1H2AJ

HS.576915 TPSG1 RNF144B

FXYD6 SNORA51 INSM2

LOC648147 LOC647881 MGC16291

SEPN1 COL17A1 CRYBA4

HS.537149 LOC646892 MORN4

LOC284441 HS.554274

ZNF541 LOC643699

OPN1SW IAPP

HIST1H2AH LOC440956

CPS1 OR5J2
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RRAD TNNI3K

LOC652764 TMEM119

UNC13C PAG1

LOC645359 ENG

MTTP

IL1A

PRAM1

LOC100134353

NUP62CL

ST18

PBXIP1

TMSB4Y

MIR197

HS.581341

LOC284757

LRRK2

LOC339352

LOC644171

LOC645585

LOC541469

LOC391771

C8ORF47

LOC650651

4.1.1 Identification of Novel Resistant Driver Genes

The resistant driver genes identified were then checked for their interactions with

other genes of the cell lines to identify the novel driver genes. The novel driver

genes in this research work were those which demonstrate a maximum number
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of interactions with other genes of the cell lines. By adopting the methodology

of finding interactions of resistant driver genes with other genes, we found the

maximum number of novel resistant driver genes. The novel resistant driver genes

identified for the first portion of data were lying in the range of 0.004 to 0.5, the

novel resistant driver genes identified for the second portion of data were lying

in the range of 0.0002 to 0.298, and the for the third portion of the data was in

the range of 0.0002 to 0.619. The final sets of novel driver genes for each cell line

utilized as a part of the consequent Gene Mania search are given in Table 4.2

Table 4.2: The novel resistant driver genes identified through Gene Mania for
each portion of the dataset

Cell Lines:

BCWM.1/BR and

BCWM.1

Cell Lines: RPCI-

WM1/BR and RPCI-

WM1

Cell Lines: MWCL-

1/BR and MWCL-1

ACP5 JMJD2A DDAH1

C6orf25 ACOX1 PTEN

CAMP DAO MTTP

CATSPERB OPN1SW SLIT3

CCDC48 ERO1B RASGRF2

CEACAM8 MAOB HIST1H4H

DEFA4 CYB5R3 COL16A1

ERCC-00076 IVD LRRN3

FXYD2 MAOA AQP3

FXYD3 XDH SATB1

FXYD4 CPS1 PALLD

FXYD5 ACAD8 HIST1H2BJ

FXYD6 GSR AGMAT

FXYD7 GALNTL4 ST18

FYDX1 MT1M SYNJ2
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FXYD7 GALNTL4 ST18

FYDX1 MT1M SYNJ2

FXYD6 SNORA51 INSM2

HS.537149 ZNF541 CDK6

SEPN1 COL17A1 CRYBA4

HS.576915 AIFM1 IL1A

LOC100132923 TPSG1 RNASE1

LOC646084 COL17A1 IAPP

LOC647190 POR UTY

LOC653257 GFER EIF1AY

MIR513A2 LONRF1 HIST1H2BO

MPO HIST1H2AH HIST1H2BB

NRXN3 ACOX1 PTEN

PELI1 HS.572121 HIST1H2AJ

PELI2 HS.514454 RPS4Y1

PELI3 LOC389105 YAP1

PGLYRP1 HS.336593 ZNF256

PGLYRP2 HS.540022 LRRC31

PGLYRP3 LOC652542 DPYS

RAPGEF1 LOC283050 PAG1

SEPN1 SNORA51 OR5J2

SH2D7 LOC647881 RNF144B

SLC46A2 HS.540022 ENG

SMOC2 LOC652542 INSM2

SPOCK2 LOC283050 CRYBA4

SNORA51 TMEM119

LOC647881 TMSB4Y

LOC646892 C8orf47

RRAD LRRK2
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LOC652764 LOC643612

UNC13C HS.563400

LOC645359 LOC647089

LOC646064

KRT39

MGC16291

MORN4

HS.554274

LOC643699

LOC440956

OR5J2

PRAM1

LOC100134353

NUP62CL

MIR197

HS.581341

LOC284757

PBXIP1

LOC339352

LOC644171

LOC645585

LOC541469

LOC391771

LOC650651

HIST1H1E

HIST1H2AJ

HIST1H2AE

HIST1H2BE

HIST1H2AM

HIST1H1E
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4.2 Identification of Resistant Biomarkers from

Genes Interaction Network

The novel driver genes were used to design directed networks of interactions. We

examined the degree distribution of each directed network and found that the

node distribution of all the three networks adjusted better to a power law distri-

bution than a direct model, A power-law fit suggests the nearness of a couple of

exceedingly connected nodes (i.e. hubs) in the networks. Generally, Hub could

incline susceptibility to the disease. Transformations in these hub genes could

prompt functional changes in the related protein which could produce changes in

its interaction with different proteins. This could prompt a failure in the network

and cause illness [256]. In this specific situation, a power law behavior suggests

that changes in the hub genes could expand vulnerability to the signs of cancer

[257] and encourage the spread of the agitation in the network. In this way, dis-

tinguishing proof of the hub genes could also pinpoint the key genes whose failure

would underscore the development of cancer or bring about resistance to specific

medication. The network of the novel resistant driver genes obtained for the cell

lines BCWM.1 and BWCM.1/BR is shown in Figure 4.1.

Figure 4.1: The network of novel driver genes of the cell lines BCWM.1 and
BCWM.1/BR
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Only five hub driver genes or the potential biomarkers were identified and displayed

a higher degree, and centrality values in figure 4.1: FXYD6, C6orf25, LOC646084,

MIR-513A2, and LOC648147. Among these biomarkers, only FXYD6 and C6orf25

are previously validated by experiments and are reported in several databases and

literature, remaining ones are predicted. These genes represented themselves as

strongly resistant against the Bortezomib and can be used as potential biomarkers

for WM. The same method was applied to design the directed networks of the other

cell lines. The network of the novel driver genes of the cell line RPCI-WM1/BR

and RPCI-WM1 is shown in figure 4.2.

Figure 4.2: The network of the novel driver genes of the cell line RPCI-
WM1/BR and RPCI-WM1

The potential biomarkers identified in the network of cell lines MCF6A and MCF3A

were OPN1SW, MAOA, XDH, CPS1, HS.572121, LOC389105, LOC283050, SNOR-

A51, LOC-283050, LOC647881, LOC284441, and LOC645359. Among these bioma-

rkers, only OPN1SW, MAOA, XDH, CPS1, and SNORA51, are already reported

experimentally validated genes and remaining ones are predicted. The network
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of the novel resistant driver genes obtained for the cell lines MWCL-1/BR and

MWCL-1 is shown in figure 4.3.

Figure 4.3: The network of novel driver genes of the cell lines MWCL-1/BR
and MWCL-1

The potential biomarkers identified in the network of cell lines shown in figure 4.3

were MTTP, PALLD, AGMAT, SYNJ2, IL1A, IAPP, LRRK2, and LOC284757,

all the genes are already reported experimentally validated except the LOC284757,

and can be used as potential biomarkers against bortezomib resistance in WM.

4.3 Degree Distribution and Centrality Analysis

of Predicted Resistant Biomarkers

Formally a centrality is a capacity C which gives each vertex v of a network,

a numeric esteem C(v). As we were interested in the ranking the vertices of a
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given network [256], we have utilized four kinds of centrality measures, closeness

centrality, betweenness centrality, harmonic centrality, and the Eigen centrality,

the power-law degree distribution and centrality measures of three networks are

displayed in table 4.3 - 4.5.

Table 4.3: The centrality measure values and power-law degree distribution
analysis of the first network

Label
In-

Degree

Out

Degree

Total

Degree

Close-

ness

Cen-

trality

Har-

monic

Cen-

trality

Between-

ness

Cen-

trality

Modul-

arity

FXYD6 8 3 11 0.8 0.875 31 1

C6orf25 1 1 2 1 1 9 1

LOC-

646084
1 1 2 0.67 0.75 2 6

MIR-

513A2
2 1 3 1 1 4 6

LOC-

648147
1 2 3 0.75 0.83 3 6

Table 4.4: The centrality measure values and power-law degree distribution
analysis of the Second network

Label
In-

Degree

Out

Degree

Total

Degree

Close-

ness

Cen-

trality

Har-

monic

Cen-

trality

Between-

ness

Cen-

trality

Modul-

arity

OPN1-

SW
3 2 5 1 1 7 1

MAOA 1 3 4 0.8 0.875 3 1

CPS1 4 2 6 1 1 8 1
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HS.-
572121

1 1 2 0.66 0.75 2 3

LOC-
389105

1 1 2 1 1 2 3

LOC-
283050

1 1 2 0.66 0.75 2 4

SNOR-
A51

11 1 2 1 1 2 4

LOC-
647881

2 1 3 1 1 3 7

LOC-
284441

1 1 2 0.66 0.75 2 7

LOC-
645359

1 1 2 1 1 2 73

Table 4.5: The centrality measure values and power-law degree distribution
analysis of the Third network

Label
In-

Degree

Out

Degree

Total

Degree

Close-

ness

Cen-

trality

Har-

monic

Cen-

trality

Between-

ness

Cen-

trality

Modul-

arity

MTTP 3 7 10 0.73 0.81 25 4

PALLD 3 5 11 0.85 0.91 35.5 4

AGMAT 7 1 8 1 1 16 4

SYNJ2 5 2 7 1 1 2.16 3

IL1A 2 3 5 0.5 0.63 6.66 3

IAAP 1 2 3 0.57 0.7 8 14

LRKK2 3 1 4 1 1 1.66 1

LOC-

284757
1 1 2 1 1 1 10

The degree of a node in a network is the number of its interactions with different

nodes and the degree distribution is the likelihood distribution of these degrees

over the entire system of the network, The higher the degree of a node more are its
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interactions with other nodes and it is more relatedly considered as hub or potential

biomarker [258]. Centrality examination is the positioning of network components

used to distinguish intriguing nodes of a network is one of these techniques [259].

From table 4.3, it is clearly observed that the minimum weighted degree is 2 and

maximum is 12, means none of the biomarkers have the degree value 0. Similarly,

the minimum centrality value starts at 0.5 and end at 1. It is especially valuable

to recognize key players in natural biological procedures. For instance, it has

been demonstrated that very associated vertices in protein interaction network

are frequently practically essential and the deletion of such vertices are identified

with lethality [257].

4.4 Gene Ontology of Resistant Biomarkers

Total of 25 genes and or proteins were identified as biomarkers or hub driver

genes from the networks. Drug resistance is an outstanding concept that occurs

when illnesses become tolerant to pharmaceutical medicines. Numerous anticancer

medications require metabolic actuation, and in this manner, tumor cells can

create resistance through diminished medication enactment. The drug resistance

is additionally accomplished by the changes in the signal transduction process

that intervene drug activation [260]. To overcome the issues of drug resistance, the

Gene Ontology (GO) of the distinguished biomarkers was done, just 12 biomarkers

represented the GO profiles, which are tentatively approved, remaining 13 didn’t

demonstrate any GO profile. The gene ontology of the resistant biomarkers is

shown in table 4.6

Table 4.6: The Gene Ontology of the potential biomarkers identified from the
networks

Mapped

IDs
Gene Names Function

PALLD Palladin actin binding
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LRRK2

Leucine-

rich repeat

serine/threonine-

protein kinase

2

MAP kinase kinase activity, ion

channel binding, tubulin binding,

Rho GTPase binding, GTPase ac-

tivator activity

SYNJ2 Synaptojanin-2
PDZ domain binding, SH3 domain

binding

MTTP

Microsomal

triglyceride trans-

fer protein large

subunit

apolipoprotein binding, lipid

transporter activity, lipid binding

MAOA

Amine oxidase

[flavin-containing]

A

serotonin binding, flavin adenine

dinucleotide binding

IL1A
Interleukin-1

alpha

interleukin-1 receptor binding,

copper ion binding, cytokine

activity

FXYD6

FXYD domain-

containing ion

transport regula-

tor 6

enzyme modulator ion channel ac-

tivity

CPS1

Carbamoyl-

phosphate syn-

thase [ammonia],

mitochondrial

endopeptidase activity, metal ion

binding

OPN1SW

Short-wave-

sensitive opsin

1

receptor activity, G-protein cou-

pled receptor activity

IAPP
Islet amyloid

polypeptide
hormone activity, receptor binding
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XDH
Xanthine dehy-

drogenase/oxidase

2 iron, 2 sulfur cluster binding,

flavin adenine dinucleotide bind-

ing, iron ion binding

AGMAT
Agmatinase, mito-

chondrial
metal ion binding

Gene Ontology is a noteworthy bioinformatics activity to bring together the por-

trayal of gene and gene item traits overall species [261] ”Ontologies” comprise a

portrayal of things that are perceptible or straightforwardly noticeable and the

relationships between those things.

LRRK2 Gene: This gene is an individual from the leucine-rich repeat kinase

family and encodes a protein with a region of ankyrin repeat, the kinase domain,

a leucine-rich repeat domain, a DFG-motif, a GTPase domain, a WD40 domain a

RAS domain, and an MLK-like domain. The protein is available to a great extent

in the cytoplasm yet in addition partners with the mitochondrial external film.

Changes in this gene have been related to Parkinson ailment [262].

PALLD Gene: This gene encodes a cytoskeletal protein that is required for

arranging the actin cytoskeleton. The protein is a segment of actin-containing

microfilaments, and it is engaged with the control of cell shape and grip. Poly-

morphisms in this gene are related to a weakness to pancreatic cancer type 1, and

furthermore with a hazard for myocardial necrosis [263].

MTTP Gene: MTP encodes the huge subunit of the heterodimeric microso-

mal triglyceride exchange protein. Protein disulfide isomerase (PDI) finishes the

heterodimeric microsomal triglyceride exchange protein, which has appeared to

assume a focal part in the assembly of lipoprotein. Transformations in MTP can

cause abetalipoproteinemia [264].

MAOA Gene: This gene is one of two neighboring gene relatives that encode

mitochondrial catalysts which catalyze the oxidative deamination of amines, for

example, dopamine, norepinephrine, and serotonin. Transformation of this gene
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outcome in Brunner disorder. This gene has likewise been related to an assortment

of another mental issue, including reserved conduct. On the other hand, grafted

transcript variations encoding numerous isoforms have been observed [265].

SYNJ2 Gene: The gene is an individual from the inositol polyphosphate 5-

phosphatase family. The encoded protein connects with the Ras-related C3 bo-

tulinum poison substrate 1, which causes translocation of the encoded protein to

the plasma membrane where it restrains clathrin-intervened endocytosis [266].

IL1A Gene: The protein encoded by this gene is an individual from the inter-

leukin 1 cytokine family. This cytokine is a pleiotropic cytokine associated with

different immune reactions, inflammatory procedures, and hematopoiesis. This

cytokine is delivered by monocytes and macrophages as a proprotein, which is

proteolytically handled and discharged in light of cell damage, and along these

lines instigates apoptosis. This gene and eight other interleukin 1 family genes

made a cytokine gene group on chromosome 2. It has been recommended that the

polymorphism of these genes is related to rheumatoid joint pain and Alzheimer’s

sickness [267].

FXYD6 Gene: This gene encodes an individual from the FXYD group of trans-

membrane proteins. This specific protein encodes phosphohippolin, which likely

influences the movement of Na, K-ATPase. Different on the other hand joined

transcript variations encoding a similar protein have been depicted. Related pseu-

dogenes have been distinguished on chromosomes 10 and X [268].

CPS1 Gene: The mitochondrial enzyme encoded by this gene catalyzes the

production of carbamoyl phosphate from salts and bicarbonate. This response is

the principal submitted venture of the urea cycle, which is vital in the excretion of

an overabundance of urea from cells. Three transcript variations encoding diverse

isoforms have been found for this gene [269].

XDH Gene: Xanthine dehydrogenase is a member of molybdenum-containing

hydroxylases engaged with the oxidative digestion of purines. The encoded protein

has been distinguished as a working protein in view of its abilities to perform
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robotically particular functions. Xanthine dehydrogenase can be changed over to

xanthine oxidase by reversible sulfhydryl oxidation or by irreversible proteolytic

adjustment [270].

OPN1SW: This gene is a member of the G-protein coupled receptor 1 family,

opsin subfamily. It encodes the blue cone pigment gene which is one of three types

of cone photoreceptors accountable for normal color visualization. Imperfections

in this gene are the reason for Tritan color blindness. Pretentious persons lack blue

and yellow sensory mechanisms while recollecting those for red and green [271].

AGMAT Gene: AGMAT gene encodes an enzyme agmanitase and belongs to

the family of hydrolases and extremely expressed in the kidney and liver. Simi-

larly, it also originates in skeletal muscle, skin, testis, fetal liver, brain, and the

gastrointestinal tract [272].

IAPP Gene: This gene encodes an individual from the calcitonin group of peptide

hormones. This hormone is discharged from pancreatic beta cells to manage blood

glucose levels. Human patients with type 1 and 2 diabetes show lessened levels

of the encoded hormone in blood and pancreas. This protein additionally shows

bactericidal, antimicrobial activities [273].

4.5 Pathways Associated with the Predicted Bio-

markers

Each predicted biomarker was then checked for its role in several pathways lead-

ing to the WM. Majority of the predicted resistance biomarkers have shown their

roles in the metabolic pathways, signaling pathways, and biosynthesis pathways.

AGMAT, SYNJ2, CPS1, MAOA, and XDH have shown their major roles in the

arginine and proline metabolic pathways, IL1A is involved in the majority of sig-

naling pathways including NF-kappa B, AKT signaling, TGF-beta signaling etc.

the identified biomarkers were annotated and mapped to the associated pathways

to determine their role in WM. The pathways were identified for only already



Results and Discussions 72

reported experimentally verified gene, the details of the pathways are shown in

Table 4.7.

Table 4.7: The Pathways associated with predicted resistant biomarkers

Gene

Names
Associated Pathways Databases

OPNS1W
G-alpha signaling in GPCR path-

way
Reactome

GPCR ligand binding pathway

MAOA Metabolism pathways

Reactome,

KEGG,

INOH

XDH Metabolism pathways

Reactome,

KEGG,

INOH

CPS1 Metabolism pathways

Reactome,

KEGG,

INOH

MTTP Metabolism pathways
Reactome,

KEGG

Transport of small molecules

AGMAT Metabolism pathways
Reactome,

KEGG

SYNJ2 Metabolism pathways
Reactome,

KEGG

IL1A IL1A Pathway NetPath

Cytokine Signaling in Immune sys-

tem pathway
Reactome

Immune System pathway

MAPK signaling pathway KEGG
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Cytokine-cytokine receptor inter-

action pathway

GPCR signaling pathway INOH

IL-1 signaling pathway

JAK STAT pathway and regula-

tion pathway

Nfk-b signaling pathway PID Biocarta

4.5.1 G-alpha signaling in the GPCR Pathway

Transducin (Gt) is a heterotrimeric G protein encoded by GNAT genes. Two types

of G proteins are the alpha-1 chain and alpha-2 chain. OPSINS after stimulation,

can bind to G (t) alpha subunits and act as GEFs. in this manner, the GDP

is replaced with GTP. Hence, activated G (t) alpha proteins separate from the

complex. Their activation results in the phototransduction cascade. Cyclic GMP

Phosphodiesterase is activated which decreases cGMP levels. Lower cGMP levels

would then be able to prompt the blockage of cGMP-directed Na+ and Ca2+

particle channels and a hyperpolarized film potential. The signaling component

for G alpha (I) inhibits the cAMP pathway through hindrance of adenylate cy-

clase. Diminished generation of cAMP from ATP results in diminished action of

cAMP-dependant protein kinases. Different elements of G alpha (I) incorporates

activation of the protein tyrosine kinase Src [274]. Regulator of G-protein Sig-

naling proteins can manage the activity of G alpha (I). As the OPSINS acts as

GEFs to activate the G-alpha which in turn activates the Src Kinase. The Src ty-

rosine kinase regulates adhesion and chemotaxis in WM and produces resistance

against therapeutic agents in WM patients [275]. The Src tyrosine kinase also

shows overexpression in WM cells as compared to cancers of B cells, and the Src

inhibitor AZD0530 when use for treatment led to significant inhibition of adhesion,

migration, and cytoskeletal signaling. The pathway is shown in Figure 4.4
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4.5.2 Metabolism Pathway

In human peripheral blood monocytes, Interleukin-4 and 3 essentially up-regulate

the proteins associated with inflammation including the outer-membrane protein

monoamine oxidase-A (MAOA) in mitochondria. MAOA catalyzes the oxida-

tive deamination of biogenic and dietary amines to regulate homeostasis. MAOA

requires FAD as a cofactor, specially oxidizes biogenic amines, for example, 5-

hydroxytryptamine (5HT), dopamine, noradrenaline, and adrenaline. 5HT is

deaminated to 5-hydroxy indol-acetaldehyde -(5HIALD). Peripheral monocytes of

WM patients show a differential expression of genes to their up-regulation [276].

The MAOA associated pathway is shown in figure 4.5

Cytosolic xanthine dehydrogenase (XDH) catalyzes the response of hypoxanthine

with water and oxygen to shape xanthine and hydrogen peroxide. The dynamic

type of the protein is a dimer. XDH also catalyzes the response of xanthine with

water to generate urate. Cytosolic nucleoside phosphorylase (NP) trimer catalyzes

the reversible response of inosine or deoxyinosine with orthophosphate to produce

hypoxanthine and ribose 1-phosphate or deoxyribose 1-phosphate. The activation

of NP with either nucleotide in vitro or in vivo, constraining the degree of this

response. NP inadequacy in vivo is related to deformities in purine nucleotide and

prompts immunodeficiency resulting in several types of Lymphoma. The changes

in the activities of NP most likely reflect changes in the lymphocyte subpopulations

and don’t appear to have an etiological role in the pathogenesis of the disturbed

response of immune system [277]. Therefore, the mutations in NP hiders the pro-

duction of XDH leading to several subtypes of Lymphoma. The XDH associated

pathway is shown in figure 4.6

This reaction occurs in the mitochondrial network and is interceded by the carbamoyl-

phosphate synthase (CPS) forming CPS1 dimer. Mitochondrial N acetylglutamate

synthetase (NAGS) catalyzes the response of glutamate and acetyl-CoA to pro-

duce N-acetyl-glutamate and CoA. Arginine activates the NAGS and produces

N-acetylglutamatein in the response thusly it is required to initiate CPS1. NAGS
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transformations in people are related with hyperammonemia whereas CPS1 is re-

sponsible for urea synthesis in the liver, any change in CPS1 leads to chronic liver

disease, which in turns manifest into WM [278]. The CPS1 associated pathway is

shown in figure 4.7

Figure 4.4: The role of OPSINS in G-alpha signaling in GPCR signaling
pathway

Figure 4.5: The role of MAOA in Metabolism pathway
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Figure 4.6: The role of XDH in Metabolism pathway

Figure 4.7: The role of CPS1 in Metabolism pathway

Phospholipid (PL) and triacylglycerol (TG) are linked in the translation of the
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apo B-48 polypeptide. MTTP (microsomal triacylglycerol exchange protein) me-

diates the whole process as an MTTP: PDI (protein disulfide isomerase) het-

erodimer. MTTP binds the small amount of PL and TG and effectively exchanges

the bound lipid between membranes. MTTP: PDI specifically associates with

the apoB-48 polypeptide and is thought to exchange lipid from the membranes

of endoplasmic reticulum to incipient apoB-48. While a portion of the MTTP

functions stays misty, the patients who need MTTP can’t create chylomicrons.

Chylomicron metabolism is understudied in the number of malignancies, in spite

of its immediate contribution to the patient nutrition status. the nonappearance

of chylomicron has been found in Hodgkin and non-Hodgkin lymphoma and WM

patients [279]. The MTTP pathway is shown in figure 4.8

Figure 4.8: The role of MTTP in Metabolism pathway

Agmatinase (AGMAT) is considered as a member of the arginase superfamily be-

cause it hydrolyzes a guanidino group within agmatine and constitutes signature

amino acid residues that act as ligand binding sites for the potential Mn(++)

cofactor. Polyamines are a group of molecules (i.e. putrescine, spermine, spermi-

dine) obtained from ornithine as indicated by a decarboxylation process. Recently,
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it has been exhibited that arginine can be used by a similar pathway prompting

agmatine development. Polyamines are basic for the development, the upkeep and

the capacity of typical cells. The multifaceted nature of their metabolism and

the way that polyamines homeostasis is firmly managed help the possibility that

polyamines are basic to cell survival. Different variations from the norm in the

control of polyamines digestion may be involved in a few pathological procedures

including several malignancies. Similarly, the excess of arginine has been observed

in patients of non-Hodgkin lymphoma and WM [280]. The AGMAT associated

pathway is shown in figure 4.9

Figure 4.9: The role of AGMAT in Metabolism pathway

At the plasma membrane, Synaptojanin-1 (SYNJ1) and -2 (SYNJ2), inositol

polyphosphate 5-phosphatase K (INPP5K) also known as SKIP, phosphatidyli-

nositol 4,5 bis-phosphate 5-phosphatase A (INPP5J) also called PIPP dephos-

phorylates the phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) to form phos-

phatidylinositol 4-phosphate (PI4P). Both the SYNJ1 and SYNJ2 have a central

5-phosphatase domain, N-terminal Sac1-like domain, and a C-terminal proline-rich

segment, This reaction is of extreme importance because of its regulation by small

GTPases of the RHO and ARF families. Mutations in these families hinder the



Results and Discussions 79

dephosphorylation reaction, thus play a role in the development of several lym-

phoma types, including WM [281]. The SYNJ2 associated pathways are shown in

figure 4.10 and 4.11

Figure 4.10: The role of SYNJs in Metabolism pathway

Figure 4.11: The role of SYNJ2 in Metabolism pathway

4.5.3 Cytokine Signaling and Nfk-b Signaling Pathway

The interleukin-1 (IL1) gene promotor contains AP-1 binding sites which are pos-

sessed by the AP-1 (FOS: JUN) complex, bringing about the activation of its

transcription. IL10 regulates cytokines expression, myeloid cell surface atoms,

and soluble mediators to initiate and sustain inflammatory and immune responses.

The impacts of IL10 on cytokine generation and capacity of human macrophages

are commonly like those on monocytes. IL10 inhibits the production of IL1A,

IL1B, IL6, IL12, IL18, CSF2 (GM-CSF), CSF3 (G-CSF), CSF1 (M-CSF), TNF,

LIF, PAF and itself by initiated monocytes/macrophages. The impact of IL10 on

IL-1 and TNF generation is especially imperative as these cytokines synergically
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affect the process of inflammation, enhancing their effect by instigating secondary

mediators, for example, chemokines, prostaglandins, and PAF [282]. IL10 addi-

tionally restrains enacted monocyte generation of inducible chemokines that are

engaged with irritation, to be specific CCL2 (MCP1), Ccl12 (MCP-5, in mice),

CCL3, CCL3L1 (Mip-1alpha), CCL4 (Mip-1beta), CCL20 (Mip-3alpha), CCL19

(Mip-3beta), CCL5 (Rantes), CCL22 (MDC), CXCL8 (IL-8), CXCL10 (IP-10),

CXCL2 (MIP-2) and CXCL1 (KC, Gro-alpha) [283]. These are associated with

the enlistment of monocytes, dendritic cells, neutrophils, and T cells, and influence

both Th1 and Th2 reactions. CXCL1 is initiated by IFN gamma and attracts the

Th1 cells; IL-4 induced CCL2 which in turns attract Th2 cells.

IL-10 also upregulates the expression of IL-1A through hindrance of mRNA degra-

dation. In human blood, monocytes Interleukin-4 and Interleukin-13 fundamen-

tally downregulate the IL1, IL-6, IL-8, IL-18, CCL2, and TNF. IL13 hinders mono-

cyte and macrophage creation of IL1-A, IL6, IL8, TNF, and IL12 through a system

that incompletely suppresses Nuclear factor NF-kappa-B, regularly seen in WM

patients. IL-1 and IL-6 genes and the most fundamentally related pathway for

them is the mitogen-activated protein kinase (MAPK) pathway, proposing that

these genes assume to play an important role in WM by motioning through the

MAPK pathway [284]. The IL1A associated pathway is shown in figure 4.12

Figure 4.12: The role of IL1A in Cytokines signaling pathway
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4.6 Collection of Drugs data used in WM Treat-

ment for PK/PD Modeling

All the drugs used for the treatment of lymphoma subtypes and WM were accessed

through a literature survey, their classes, pharmacological data, dosage, pharmaco-

dynamics, and ADMET properties were accessed through the Drug Bank database.

The details of the information are given in table 4.8

Table 4.8: The detailed information of drugs used in the treatment of WM

Drug name Class Dosage

Pharma-

cological

data

Pharmaco-

dynamics

ADMET

proper-

ties

Bortezomib

Carboxylic

acids and

derivatives

1 3.5 mg Available N-A Available

Carfilzomib

Carboxylic

acids and

derivatives

10 mg Available Predicted Predicted

Ixazomib

Benzene

and sub-

stituted

derivatives

2- 4mg Available Predicted NA

Oprozomib

Carboxylic

acids and

derivatives

20mg N-A N-A N-A

Rituximab

Carboxylic

acids and

derivatives

10 -1400

mg
Available Predicted Available

Bendamustine
Benzimida-

zoles
25 100 mg Available Predicted Available
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Chlorambucil

Organo-

nitrogen

compounds

2 mg Available N-A Available

Cladribine
Purine nu-

cleosides
1 10 mg Available Available Available

Cyclophos-

phamide

Organo-

nitrogen

compounds

2 -500 mg Available Available Available

Doxorubicin
Anthra-

cyclines
2 -150 mg Available Available Available

Vincristine
Vinca alka-

loids
1 5 mg Available Available Available

Prednisone

Steroids

and deriva-

tives

1 50 mg Available Available Available

Fludarabine
Purine nu-

cleosides
10 50 mg Available Available Available

dexametha-

sone

Steroids

and deriva-

tives

1 10 mg Available Available Available

Thalidomide

Isoindoles

and deriva-

tives

50 200 mg Available Available Available

As this research study focuses on the Bortezomib resistance profiling in WM, the

Bortezomib is a proteasome inhibitor and belongs to carboxylic acids and their

derivatives, therefore only those drugs, lying in the same class and proteasome

inhibitors were selected along with bortezomib for PK/PD analysis. From Table

4.8 it is clearly seen that only Rituximab, Oprozomib, and Carfilzomib have similar

class as that of Bortezomib, the Ixasomib have different class but it is proteasome



Results and Discussions 83

inhibitor, therefore, it was also selected. However, all other drugs (table 4.8) are

being used in the WM treatment but the majority of the drugs have different

classes, therefore, we excluded them from our study

4.7 Mono Therapy and Combination Therapy

PK/PD models

Model-design based research is remodeling the manner in which researchers and

scientists work and enables them to design the clinical laboratory tasks to the

work area of the computer screens [285]. To access the PK and PD simulations

for the aforementioned selected drugs two types of models were built monotherapy

and combination therapy. The purpose of designing both models was to access

their PK/PD profiles individually as well as in combination.

The monotherapy model consists of the single central compartment, consisting of

single drug dose and its elimination route from the compartment, whereas com-

bination therapy model consists of two central compartments named as central 1

and central 2. Both the models are given in figure 4.13

Figure 4.13: The PK/PD models, a) mono therapy PK/PD model, b) Com-
bination therapy PK/PD model
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Figure 4.13 shows that the drug enters into the central compartment, produces its

effect on the compartment and then eliminate from the compartment. The circles

linking the arrows with one another represent the reactions. Both the models can

be explained in terms of differential equations are as follows

d(Dose)

dt
= −kaCentral ×Dose (4.1)

d(Drug)

dt
=

1

Central
×(kaCentral×Dose−(keCentral×Drug)×Central) (4.2)

where the Ka represents the absorption transition of dose in the central com-

partment, Ke denotes drug elimination from the central compartment. Plasma

pharmacokinetics were modeled utilizing the monotherapy model. Nonlinear least

squares weighting function was used as 1/y2 observed For Bortezomib, Carfil-

zomib, Oprozomib, Ixazomib, and Rituximab. Pharmacokinetic parameters were

assessed from mean levels of drug concentrations. Since PK data for the afore-

mentioned drugs were acquired through the clinical trials[247–251], the pharma-

cokinetic simulations were performed utilizing a naive pooled approach.

4.7.1 Tumor Growth Model

To determine the effects of each selected drug on the biomarkers as well as on tumor

weight, the tumor growth model suggested by Simoni et al., [238] was understood

properly and designed in the Simbiology toolbox of Matlab. The model was then

integrated with both mono and combination therapy models to access the effects

of drugs on tumor individually, as well as their effects in combination. Several

concepts were undertaken while designing the model including proliferation rate

of tumor, and change in its weight due to several treatment measures, the effects

of combination therapy on tumor growth were also considered. The Tumor growth

model is shown in figure 4.14
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Figure 4.14: Tumor growth model

The tumor growth model comprises weight denoted by W and several growth

rate attributes from X1 - X4 that changes with the passage of time when the

drug dosage is induced into the model. The decay reaction in the model tells the

decrease in weight of the tumor, after drug induction.

The model (fig. 4.14) demonstrates the two unique stages: an underlying exponen-

tial development in the weight pursued by linear growth before the treatment. The

tumor development changes from exponential to linear development at a thresh-

old tumor mass (wth). This expects all cells are proliferating (X1) when tumor

occurs. At the point when the medication is induced into the model, a few cells

got damaged by it and returned to the non proliferating (X2, X3, X4) and further

turned out to be dead cells through a mortality chain. The differential equations

representing the tumor growth model are:

d(X1)

dt
= L1×L0×X12/(L1 + L0×X1)

w
−phil2×K1×X1×Drug1+K2×X1×Drug2

(4.3)

d(X2)

dt
= phil2×K1×X1×Drug1 +K2×X1×Drug2−K1×X2 (4.4)
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d(X3)

dt
= K1×X2−K1×X3 (4.5)

d(X4)

dt
= K1×X3−K1×X4 (4.6)

where the L1 and L0 are fixed parameters according to the tumor growth before

treatment, K1 and K2 are rate constants for non proliferating cells, the phil2 is

used to show the effects of interaction between two drugs, On the off chance that

if there is no interaction between the two medications, phil2 would equal to 1.0,

which demonstrates the additive effect of two drugs combination. On the other

hand, phil2 is greater than or less than 1, shows that there is a synergistic or an

opposing effect between the two drugs. However, in the tumor integrated PK/PD

model, All the parameters were set according to the monotherapy and combination

model. This integrated model was further used in this study to analyze drug

pharmacodynamics.

4.8 Parameters Selection and Estimation for the

Models

All the parameters required for the drugs and models were estimated through a

nonmixed effect model with isqnonlin (nonlinear least square model) on the pooled

data. for this purpose, the clinical trials data of selected drugs were exported into

the model one by one and nonlinear least square function was applied to calculate

the combined model parameters for all the drugs. Parameters of the model are

given in Table 4.9

The parameters displayed in the table 4.9 were further used to perform PK/PD

simulation of the model to determine different dosage regimens for the selected

drugs.
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Table 4.9: The detailed information of drugs Parameters used in the PK/PD
model

Parameter name Value Unit

Cl-Central 1 mL kg -1. d-1

ka-Central 0 ug. mL-1

ke-Central 1 mL. kg-1

w0 0.085 cm3

K1 0.469 d-1 cm3

phil2 1.98 NA

K2-2 0.00732 d-1

K2-1 0.01542 d-1

L1 0.334 d-1

L0 0.334 d-1

ka-Central2 1 ug. mL-1

Cl-Central2 1 ug. mL-1

ke-Central2 1 ug. mL-1

Central 1 L

Central2 1 L

w 3.085 cm3

X1 0.085 cm3

X2 to X4 1 cm3

4.9 PK Modeling and Simulation of Drugs

The reason for PK is to research what the body does to a drug and PK modeling

quantitatively or numerically shows the procedures of drug ADME. The pharma-

cokinetic conduct of a drug is a basic determinant of both its adequacy and safety.

To determine the PK profiles of drugs, their pharmacokinetics modeling was done
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on the clinical trials data, their concentration in the central compartment, drug

absorbance and clearance were determined, the PK profiles of the drugs are shown

from figure 4.15 to 4.19 and Table 4.10

Table 4.10: The PK profiles generated for the selected drugs used in the
treatment of WM

Drug name Dose Cl-Central Ka-Central

Bortezomib 3.5 mg
2.10549862 mL kg -1.

d-1
3.71848844 ug. mL-1

Carfilzomib 10 mg 6.9535123 mL kg -1. d-1 7.20526531 ug. mL-1

Ixazomib 4 mg
2.41730632 mL kg -1.

d-1
4.221432 ug. mL-1

Oprozomib 20 mg 10.012763 mL kg -1. d-1 16.5001832 ug. mL-1

Rituximab 30 mg
16.85307726 mL kg -1.

d-1
30.135141 ug. mL-1

Clearance (CL) is amongst the most essential PK parameters and is characterized

as the volume of body liquid (e.g., plasma) from which a drug is eliminated by

bio-transformation as well as discharge, per unit of time. To a great extent, CL

explains the fate of a drug compound in the body. The prediction of human

CL is basic in medication disclosure [286]. It is clearly observed that all the

drugs have a higher clearance rate and represented a good agreement between the

Simulations results and Clinical Trials. Ka refers to the absorption rate of the

drug in the central compartment, dependent upon drug dose. The higher the dose

of a drug higher should be its absorption rate, it is a characteristic of effective

drug compounds.

The figure 4.15 represents the Time-course of Bortezomib plasma concentrations

in the central compartment following 3.5 mg.m-2 Bortezomib IV administration

for 50 hours on a daily basis, the x-axis represents the time in hours whereas y-axis

shows concentration in mg.m-2. The circles represent the observed values obtained
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through the data from [247], and solid lines show predicted PK profiles based on

scaling approach.

Figure 4.15: The PK modeling of Bortezomib in central compartment

According to the model predictions (fig(4.15)), in the first peak, 3.5 mg.m-2 dose

of bortezomib was observed concentration in the clinical pharmacokinetics data,

3.2 mg.m-2 was predicted through the model with a difference of 0.2, in the second

peak the model predictions is 3.7, again with a difference of 0.2, but the third peak

is as exact as observed profiles.

Figure 4.16: The PK modeling of Carfilzomib in central compartment
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In figure 4.16 the x-axis represents the time in hours whereas y-axis shows con-

centration in mg.m-2. The above figure represents the Time-course of Carfilzomib

plasma concentrations in the central compartment following 10 mg.m-2 dose ad-

ministration for 160 hours on the planned schedule, the circles represent the ob-

served values obtained through [248], and solid lines show predicted PK profiles

of Carfilzomib, based on scaling approach.

The model predictions (fig 4.16) shows that, 10 mg.m-2 dose of carfilzomib con-

centration was actual in the observed data, the model predicted 10.1 mg.m-2 with

a difference of 0.1, in second peak the model predicted concentration of about 9.9

mg.m-2 again with a difference of 0.1

Figure 4.17: The PK modeling of Ixazomib in central compartment

In figure 4.17 the x-axis represents the time in hours whereas y-axis shows con-

centration in mg.m-2. The above figure represents the Time-course of Ixazomib
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plasma concentrations in the central compartment following 4 mg.m-2 dose admin-

istration for 360 hours on a planned schedule of 3 intervals, the circles represent the

observed values obtained through [251], and solid lines show predicted PK profiles

of Ixazomib, the model predictions show that 4 mg.m-2 dose of Ixazomib concen-

tration was actual in the observed data, the model predicted 4.2 mg.m-2 with a

difference of 0.2, in second peak the model predicted concentration of 4 mg.m-2

perfectly as observed and in the third peak it gives 3.8 mg.m-2 concentration again

with a difference of 0.2.

The PK modeling of Ixazomib also shows that it is cytotoxic in nature with a larger

half-life than normal, so it can not be given to patients with mild symptoms.

Figure 4.18: The PK modeling of Oprozomib in central compartment

Figure 4.18 represents the Time-course of Oprozomib plasma concentrations in

the central compartment following 20 mg.m-2 dose administration for 120 hours,

according to planned dosage schedule. The x-axis represents the time in hours
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whereas y-axis shows concentration in mg.m-2, the circles represent the observed

values obtained through the reference [249], and solid lines show predicted Opro-

zomib PK profiles.

This figure 4.18 also shows the 0.2 difference between model prediction and ob-

served clinical PK data, 20 mg.m-2 are observed in clinical data, where as in model

the concentration rate is 18 mg.m-2.

Figure 4.19: The PK modeling of Rituximab in central compartment

Figure 4.19 represents the Time-course of Rituximab concentrations in the central

compartment following 30 mg.m-2 dose administration for 4 days, on a daily basis.

The x-axis represents the time in days whereas y-axis shows concentration in

mg.m-2, the circles represent the observed values obtained through the clinical

trials [250], and solid lines show predicted PK profiles of Rituximab 30 mg per

milliliter dose given to patient intravenously for 4 days.
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In figure 4.19 again the difference in all peaks is near to 0.2, the observed concen-

tration rate was 30 mg/m2, the model predicted 30.2 to 32 mg/m2 concentration at

each peak. It is clearly observed from figure 4.15 - 4.18 that our model predictions

are quite similar to those of clinical data obtained through [247–251]. However,

only a difference of 0 to 2 occurs in the model prediction and actually observed

profile, with a standard model error of 0.2, representing minimal and acceptable

error rate in the model predictions.

4.10 PD Modeling and Simulations of Drugs

PD is the investigation of what a drug does to the body. PK/PD modeling char-

acterizes a scientific connection among PD impact and drug exposure to the body

and decides how much drug dose is required, and to what extent, to acquire the

proper effect [287]. To perform PD modeling of drugs, the doses of compounds

were enter into the model, simulations time was set to 30 days, PK estimates of

drugs were set as variant and graphs were generated to determine the effects of

individual drugs on the tumor weight (mono-therapy), as well as their effects in

combination with Bortezomib (combination-therapy). The results of monotherapy

PD modeling are given in figures 4.20 - 4.24

Figure 4.20: The PD modeling to determine the effects of Bortezomib con-
centration on tumor weight
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3.5 mg.m-2 dose of Bortezomib was introduced into the monotherapy PK/PD

model on the first day as a treatment therapy with a repeat rate of every 4th day

for a 28-day cycle. In figure 4.20 the X-axis represents the days whereas Y-axis

shows concentration values.

It was observed that at initial the weight of tumor was 3 gram, as the treatment

started the tumor weight decreased and reach to 0.2 g, but as soon as the doses

stopped after the 17th day of treatment, the tumor again stated to increase in

weight and reached to 0.3 gram on the 30th day. The absorption rate of the dose

is shown by blue color, it is clearly seen that the absorption rate of Bortezomib is

quite high on each dose to about 3.5 to 3.7 mL kg -1 d-1, which shows its efficacy.

The drug clearance is shown by red color solid lines, lying in the range of 3.6 to

2.1 ug. mL-1. After the stop of drug dose on the 18th day, the drug is completely

cleared from the body after 21 days.

Like for various other anticancer drugs, the surface area of the body did not seem

to affect clearance of drugs, proposing that they could be tested given at a settled

portion [288]. Generally, the huge effect of body measure on PK/PD, anticancer

medications ought to be given at a fixed dosage since it is more advantageous and

may even be more secure. Keeping this statement in mind the fixed dosage of 3.5

mg.m-2 was given to model.

Figure 4.21: The PD modeling to determine the effects of Carfilzomib con-
centration on tumor weight
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In figure 4.21 the X-axis represents the days whereas Y-axis shows concentra-

tion values. 10 mg.m-2 dose of carfilzomib was introduced into the monotherapy

PK/PD model on the first day as a treatment therapy with a repeat rate of every

5th day for a 28-day cycle. It was observed that at initial the weight of the tumor

was 3 gram, as the treatment started the tumor weight started to decrease and

diminished on the 17th day after the last dose.

The absorption rate of the dose is shown by blue color, it is clearly seen that the

absorption rate of Carfilzomib is lying in the range of 6.7 to 7.0 mL kg -1. d-1. The

drug clearance is shown by red color solid lines, lying in the range of 5 to 6.4 ug.

mL-1. After the stop of drug dose on the 15th day, the drug is completely cleared

from the body after 21 days.

It was also observed that after the administration of Carfilzomib first dose, its

concentration declined quickly with time, and most of the drug was disposed of

from the compartment before the administration of the second dose. Carfilzomib

accumulation was not seen among doses, and also, its exposure was not changed

upon continue dosing.

Figure 4.22: The PD modeling to determine the effects of Izxazomib concen-
tration on tumor weight
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In figure 4.22 the X-axis represents the days whereas Y-axis shows concentration

values. 4 mg.m-2 dose of Ixazomib was introduced into the monotherapy PK/PD

model on the first day as a treatment therapy with a repeat rate of 8th, 9th, and

15th day for a 28-day cycle. It was observed that the Ixazomib absorbed quickly

into the central area with an absorption rate of 3.9 to 4 mL.kg -1. d-1, and cleared

from a compartment at a rate of 1.8 to 2.7 ug. mL-1. At initial, the weight of tumor

was 3 gram, as the treatment started the tumor weight started to decrease and

reach to 0.2 g, but as soon as the doses stopped after the 15th day of treatment,

the tumor again stated to increase in weight and reached to 0.4 gram on the 30th

day. The absorption rate of the dose is shown in blue color. The drug clearance is

shown by red color solid lines. After administration of the first dose of Ixazomib,

it was observed that it quickly absorbs in the compartment within the median

time, but does not produce fruitful effects on the tumor size.

Figure 4.23: The PD modeling to determine the effects of Oprozomib concen-
tration on tumor weight

In figure 4.23 the X-axis represents the days whereas Y-axis shows concentration

values. 20 mg.m-2 the dose of Oprozomib was introduced into the monotherapy

PK/PD model on the first day as a treatment therapy with a repeat rate of every



Results and Discussions 97

5th day for a 25-day cycle. It was observed that at initial the weight of the tumor

was 3 gram, as the treatment started the tumor weight started to decrease and

diminished on the 12th day. The absorption rate of Oprozomib is lying in the

range of14 to 16.5 mL.kg -1. d-1. The drug clearance is, lying in the range of 6.5

to 10 ug. mL-1.

The dose-dependent decrease in the tumor was observed in the case of Oprozomib,

change in the dose range also changed the tumor inhibition rate. In the divided

dose treatment plan, the maximum decrease in tumor weight was found after

simulations, bringing about 90 percent hindrance in Tumor size.

Figure 4.24: The PD modeling to determine the effects of Rituximab concen-
tration on tumor weight

In figure 4.24 the X-axis represents the days whereas Y-axis shows concentration

values. 30 mg.m-2 dose of Rituximab was introduced into the monotherapy PK/PD

model on the zero-day as a treatment therapy with a repeat rate of every 5th

day for a 24-day cycle. It was observed that at initial the weight of the tumor

was 3 gram, as the treatment started the tumor weight started to decrease and

diminished on the 10th day after the last dose. The absorption rate of the dose is



Results and Discussions 98

quite high lying in the range of 30 to 31 mL.kg -1. d-1. The drug clearance is lying

in the range of14 -16 ug. mL-1. After the stop of drug dose on 20th da,y the drug

is completely cleared from the body after 22 days. Quite good Rituximab PK is

shown by monotherapy PK/PD model comparing to target-interceded behavior of

drug, the clearance of Rituximab is again quite similar to its clinical response.

As our study focuses on Bortezomib resistance profiling and its treatment efficacy,

therefore the PD modeling of drugs was simulated in combination with Bortezomib

one by one. The results of combination therapy PD modeling are shown in figure

4.25 - 4.28

Figure 4.25: The PD modeling to determine the effects of Bortezomib in
combination with Carfilzomib on tumor weight

In figure 4.25 of the combination therapy, PK/PD model, the X-axis represents

the days whereas Y-axis shows concentration values. The dose criteria were set

to 3.5 mg.m-2 dose of Bortezomib on the start day as a treatment therapy with a

repeat rate of every 2.8 days for a 28-day cycle. and 10 mg.m-2 Carfilzomib dose

started from the first day with a rate of mixed dosing interval up to 17 days, using

such combination, it was observed that the tumor weight reached to 0 g from 3

g on 12 days of the treatment cycle and never raised again. The blue color lines

show dose 1 (Bortezomib) and yellow solid lines represent dose 2(Carfilzomib), the

tumor is represented by the green line.
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Figure 4.26: The PD modeling to determine the effects of Bortezomib in
combination with Ixazomib on tumor weight

In figure 4.26 the X-axis represents the days whereas Y-axis shows concentration

values. The dose criteria was set to 3.5 mg.m-2 dose of Bortezomib on the start day

as a treatment therapy with a repeat rate of 3rd, 6th, and 9th day and 4 mg.m-2

of Ixazomib on day 1, 8th, and 15th for a 28-day cycle. Using such combination,

it was observed that the tumor weight reached to 0.2 g on the 15th day of the

treatment cycle, as the treatment stopped, the tumor again started to increase

and reached to 0.3 on the 30th day since the start of treatment. The blue color

lines show dose 1 (Bortezomib) and yellow solid lines represent dose 2(Ixazomib),

the tumor is represented by the green line.

Figure 4.27: The PD modeling to determine the effects of Bortezomib in
combination with Oprozomib on tumor weight

In figure 4.27 the X-axis represents the days whereas Y-axis shows concentration

values. The dose criteria was set to 3.5 mg.m-2 dose of Bortezomib on the start

of treatment therapy with a repeat rate of every 3 days for a 28-day cycle. and
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20 mg.m-2 Oprozomib dose started from day 4 with a rate of every 4th day up to

17 days, using such combination, it was observed that the tumor weight reached

to 0 g from 3 g on 12 days of the treatment cycle and never raised again. The

blue color lines show dose 1 (Bortezomib) and yellow solid lines represent dose

2(Oprozomib), the tumor is represented by the green line.

Figure 4.28: The PD modeling to determine the effects of Bortezomib in
combination with Rituximab on tumor weight

In figure 4.28 the X-axis represents the days whereas Y-axis shows concentration

values. The dose criteria was set to 3.5 mg.m-2 dose of Bortezomib was on the

start day as a treatment therapy with a repeat rate of every 3rd day for a 28-day

cycle. and 30 mg.m-2 Rituximab dose started from the 2nd day with a rate of

every 5th day up to 17 days, using such combination, it was observed that the

tumor weight reached to 0 g from 3 g on 10 days of the treatment cycle and never

raised again. The blue color lines show dose 1 (Bortezomib) and yellow solid lines

represent dose 2(Rituximab), the tumor is represented by the green line.

From figure 4.25 - 4.28 it is clearly observed that the combination of Bortezomib

with Ixazomib does not produce satisfactory results as compared to other combina-

tions. The combination of Bortezomib with Rituximab shows the most significant

decrease in the tumor weight in only 10 days after the start of treatment.
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4.11 Biological Verification of Modeling and Sim-

ulations Results

The model simulations were biologically validated by the clinical pk results of

the drugs, given in literature [250, 251, 289–291]. For this purpose the same

dosing schedule was given to the model and simulations were performed, it was

observed that for each drug dosing regimen same simulation graphs were generated

as present in the [250, 251, 289–291] which confirms the accuracy of PK/PD model.

The comparisons results are shown in figures 4.29 - 4.33

a)

b)

Figure 4.29: Comparison of the Clinical PK/PD results of Bortezomib, ob-
tained through [289] with simulations of the model: a) Clinical Results, b)

Model simulations

In the figure 4.29, a) shows the clinical PK/PD results of Bortezomib, 3.5 mg.m-2

was administered into the WM patients. The dose concentration was reached to

its maximum on 100 ng/mL soon after administration and started to decrease and
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reached to 2 ng/mL after 25 hours, after 250 hours it was completely cleared from

the body. Same model simulations were produced for the Bortezomib. According

to the model simulations b) the concentration of Bortezomib was 0.001 mg/mL

(100 ng = 0.01 mg) and reached to the 0.2 x 10-3 after 25 hours, same as that of

Clinical results.

b)

Figure 4.30: Comparison of the Clinical PK/PD results of Carfilzomib, ob-
tained through [290] with simulations of the model: a) Clinical Results, b)

Model simulations

In figure 4.30, a) shows the clinical PK/PD results of Carfilzomib, 10 mg.m-2

was administered into the WM patients. The dose concentration was reached to

its maximum on 10000 ng/mL soon after administration and started to decrease

and reached near to 0.1 ng/mL after 120 minutes. Same model simulations were

produced for the Carfilzomib.
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According to the model simulations b) the concentration of Carfilzomib was 0.01

mg/mL (10000 ng = 0.01 mg) and reached to 0.1 after 120 minutes.

b)

Figure 4.31: Comparison of the Clinical PK/PD results of Ixazomib, obtained
through [285] with simulations of the model: a) Clinical Results, b) Model

simulations

In figure 4.31, a) shows the clinical PK/PD results of Ixazomib, 20 mg.m-2 was

administered into the patients. The dose concentration was reached to its maxi-

mum on 20 ng/mL soon after administration and started to decrease and reached

to 1 ng/mL after 144 hours.

Same model simulations were produced for the Ixazomib. According to the model

simulations the concentration of Ixazomib was 2 x 10-2 mg/mL (20 ng = 2 x 10-2)

and reached to the 0.1 x 10-2 after 144 hours.
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b)

Figure 4.32: Comparison of the Clinical PK/PD results of Oprozomib, ob-
tained through [291] with simulations of the model: a) Clinical Results, b)

Model simulations

In figure 4.32, a) shows the clinical PK/PD results of Oprozomib, 20 mg.m-2 was

administered into the patients. The dose concentration was at its maximum on

100 mg/mL soon after administration and started to decrease and reached to 50

mg/mL after 40 minutes of administration. According to the model simulations,

the concentration of Oprozomib was 100 mg/mL and reached to the 50 mg/mL

after 40 minutes of administration.
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b)

Figure 4.33: Comparison of the Clinical PK/PD results of Rituximab, ob-
tained through [284] with simulations of the model: a) Clinical Results, b)

Model simulations

In figure 4.33, a) shows the clinical PK/PD results of Rituximab 30 mg.m-2 dose

was administered into the patients with an interval of 21 days for 331 days cycle.

The dose concentration was started from 100 mg/mL, continues to increase and

reached to 400 mg/mL on 147th-day of dosing cycle. The concentration started to

decrease and again reached to 100 mg/mL on the 182nd day and eliminated from

the body after 130 days of dosing cycle. Same model simulations were produced

for the Rituximab.

4.12 Biomarkers Response Against Drugs

The Biomarkers that can characterize the patients with various visualizations af-

ter chemotherapy stays limited and require further investigation. The motivation

behind this study is to additionally distinguish response of Biomarkers for evalu-

ating chemotherapy viability by means of computational Bioinformatics examina-

tion of gene expression profiles of WM patients. In order to determine the effect

of drugs on the expression level of Biomarkers, the Biomarkers interaction model

was developed on the basis of interactions networks, in the Simbiology Matlab,

the parameters of Biomarkers were set same as to the normalized values of gene

expression cell lines data and the simulations were produced. Responses were gen-

erated only for those genes which are experimentally validated. The Biomarkers

response model and their responses to drugs are given in figure 4.34
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Figure 4.34: Doses interaction and biomarkers response model

In figure 4.34, the arrows show interactions (identified through gene interaction

networks) the dose reaction was formed and linked to only those genes which are

experimentally validated. The differential equations produced for the model are

following

EV genes = (IL1A + SNORA51 + LRRK2 + MTTP + PALLD + MAOA +

FXYD6 + CPS1 + IAPP + SYNJ2 + XDH + OPN1SW)

d(IL1A)

dt
= Ksyn×MAOA− ksyn× IL1A+DrugDose× (EV genes) (4.7)

d(IAPP )

dt
= Ksyn× IL1A+DrugDose× (EV genes) (4.8)

d(SY NJ2)

dt
= Ksyn× IL1A+DrugDose× (EV genes) (4.9)
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d(XDH)

dt
= Ksyn×XDH +DrugDose× (EV genes) (4.10)

d(OPN1SW )

dt
= Ksyn×XDH +DrugDose× (EV genes) (4.11)

d(MAOA)

dt
= Ksyn×MAOA+DrugDose× (EV genes) (4.12)

d(CPS1)

dt
= Ksyn×MAOA+DrugDose× (EV genes) (4.13)

d(FXYD6)

dt
= Ksyn× FXYD6 +DrugDose× (EV genes) (4.14)

d(SNORA51)

dt
= Ksyn× LOC647181− SNORA51 +DrugDose× (EV genes)

(4.15)

d(MTTP )

dt
= −Ksyn×MTTP +DrugDose× (EV genes) (4.16)

d(PALLD)

dt
= Ksyn× PALLD +Ksyn×MTTP +DrugDose× (EV genes)

(4.17)

d(AGMAT )

dt
= Ksyn×AGMAT +Ksyn× PALLD +DrugDose× (EV genes)

(4.18)
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d(LRRK2)

dt
= Ksyn× AGMAT +DrugDose× (EV genes) (4.19)

Ksyn parameter was used in the model as synthesis rate of proteins, several units

for the parameters were assumed, the Parameters and units used in the model are

given in table 4.11

Table 4.11: Parameters values used in the Biomarkers interaction and Re-
sponse model

Biomarker Value Unit

Ksyn 1 Liter

DrugDose 35 - 30 mg.m-2

IL1A 0.91559 molecule

IAPP 0.92857 molecule

SYNJ2 0.95975 molecule

XDH 0.92468 molecule

OPN1SW 0.90909 molecule

LOC648147 0.90519 molecule

MIR513A2 0.91818 molecule

LOC646084 0.95974 molecule

MAOA 0.68311 molecule

CPS1 0.9039 molecule

LOC284441 0.91559 molecule

LOC645359 0.9 molecule

FXYD6 0.28182 molecule

LOC389105 0.95325 molecule

C6orf25 0.93435 molecule

LOC284757 0.90649 molecule

SNORA51 0.91948 molecule

LOC283050 0.92468 molecule



Results and Discussions 109

LOC647881 0.91816 molecule

MTTP 0.92078 molecule

PALLD 0.96364 molecule

AGMAT 0.96104 molecule

LRRK2 0.90629 molecule

HS572121 0.96494 molecule

Before adding any dose into the model it was observed that PALLD, AGMAT,

FXYD6, IL1A, XDH, and MAOA genes were down regulating where-as others

were overexpressed shown in Figure 4.35. The Dose reaction was designed into

the model with variable values, for each selected drug the value of dose reaction was

changed according to the drug dosage regimens and simulations were produced to

determine the response of biomarkers against specific drug dosages, the simulation

results are shown in figures 4.35 - 4.39.

Figure 4.35: Expression level of Biomarkers before any dose induction
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In figure 4.35, the X-axis represents time in hours and Y-axis shows expression

levels of Biomarkers in mole/hour, the expression levels start from 0.9 and reached

to a maximum of 3.6 for a biomarker. Similarly, the down expression starts from

0.9 and reached to 0.

Figure 4.36: The Biomarkers response against Bortezomib 3.5 mg

In figure 4.36, it was observed that when 3.5 mg.m-2 was added into the model,

Decrease in the expression level of PALLD, AGMAT, FXYD6, IL1A, XDH, and

MAOA was seen, whereas other biomarkers showed overexpression with a slight

change in the expression levels.

It was observed that after the dose, the expression of LRRK2 got increase from 3.6

to 5, OPN1SW from 1.8 - 2.0, the expression levels of CPS1, SYNJ2, and IAPP

also increased from previous expressions but PALLD, AGMAT, FXYD6, IL1A,

XDH, and MAOA expressions did not show much change in their expressions.

Figure 4.37: The Biomarkers response against Ixazomib 4 mg
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Same simulation results were produced for Ixazomib 4 mg.m-2 dose in figure 4.37

as that of Bortezomib with a slight variation in the expression levels.

Figure 4.38: The Biomarkers response against Carfilzomib 10 mg

In figure 4.38, Again same simulation results were produced for Carfilzomib 10

mg.m-2 dose as that of Bortezomib and Ixazomib with a slight variation in the

expression levels.

Figure 4.39: The Biomarkers response against Oprozomib 20 mg

The figure 4.39 shows that when 20 mg.m-2 of Oprozomib was given to the model,

all the Biomarkers show a change in their expression level, PALLD, AGMAT,
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FXYD6, IL1A, XDH, and MAOA showed an increase in their expression from 0,

and other Biomarkers showed much elevation in their expression level.

Figure 4.40: The Biomarkers response against Rituximab mg

Same results were produced for Rituximab in figure 4.40, when its 30 mg.m-2 of

Oprozomib was given to the model, all the Biomarkers show change in their ex-

pression level, PALLD, AGMAT, FXYD6, IL1A, XDH, and MAOA showed an

increase in their expression from 0, and other biomarkers showed much elevation

in their expression level. When doses were given in combination with Bortezomib

collectively it was seen that all the biomarkers showed an increase in their expres-

sion levels than the level without induction of doses.

A few investigations have shown a progression of Biomarkers related to chemother-

apy reaction. For instance, Sun et al [291] revealed that phosphoglycerate kinase-1

(PGK1) is upregulated in breast cancer tissues at both mRNA and protein lev-

els, as compared to normal tissues. Additionally, patients with elevated amounts

of PGK1 expression show shorter in general survival regardless of whether the

paclitaxel chemotherapy routine is planned, demonstrating PGK1 might be an

autonomous prognostic biomarker for chemoresistance to paclitaxel [292]. Ata-

seven et al explained that patients with high expression of protein tyrosine kinase 7

displayed a fundamentally poorer 3-year sickness free survival increment. Notwith-

standing, while accepting taxane-based chemotherapy, they indicated essentially
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preferred disease-free survival over those receiving no chemotherapy, recommend-

ing protein tyrosine kinase 7 might be a prognostic biomarker related with the

affectability to taxane [293]



Chapter 5

Conclusion and Future

Recommendation

Genomic, proteomic, and other omic-based methodologies are currently being uti-

lized in biomedical research to encourage the understanding of mechanisms in-

volved in diseases and identification of molecular targets and biomarkers for re-

medial and diagnostic advancement. The Omics innovations and bioinformatics

devices for investigating Omics information are quickly progressing, numerous en-

deavors have been made to find novel biomarkers for early illness in oncology,

disease-specific biomarkers, and resistant biomarkers to chemotherapies. How-

ever, the absence of proficient computational techniques blocks the disclosure of

such biomarkers for better understanding and the board of treatment results. In

this study, the resistant biomarkers against Bortezomib profiling in Waldenstrom’s

macroglobulinemia were studied. Waldenstrom macroglobulinemia is a kind of

non-Hodgkin lymphoma. The malignant cells make a lot of proteins (called a

macroglobulin). Another name for WM is lymphoplasmacytic lymphoma.

To distinguish the biomarkers associated with resistance to bortezomib in WM

cells, we identified novel driver genes. Each of these genes is a potential novel

analytic resistant biomarker against bortezomib, utilized for the WM. The mod-

ularity analysis, power-law degree distribution and centrality analysis reaffirmed

114
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these key genes, by recognizing the bigger networks of which they are apart. More

than a single gene, it could be the networks of genes that are basic to the ma-

lignancy development and subsequently, these networks could fill in as indicative

biomarkers for bortezomib resistance and in addition, act as a target to treat. The

Gene Ontology investigation has revealed insight into certain novel functions of

these biomarkers. This study has been powerful in uncovering novel biomarkers

and mechanisms that are driving the cancers. A total of 25 markers associated

with bortezomib-resistance are recognized in this study, utilizing the gene interac-

tion network analysis. The consequences of this research work give various solid

directions to advance examination of the biology of WM cells. For each identified

biomarker, their associated pathways were determined and about thirteen differ-

ent pathways, linked to the WM in some manner were found. IL1A showed a

maximum number of associated pathways including Cytokine signaling and Nfk-b

pathways. PK/PD modeling and simulation can be utilized as a ’connected sci-

ence’ instrument to give replies on the viability and safety of medications quicker

and at a lower cost. Keeping this thing in mind, the information about the drugs

used for WM treatment were collected, and only 5 drugs were selected for PK/PD

modeling, the monotherapy and combination therapy PK/PD models were de-

veloped and simulations were performed collectively, it was observed that among

the selected drugs, Carfilzomib and Rituximab displayed strong effect on tumor

weight and behaved better as compared to other drugs, similarly, in combination

with bortezomib again both Carfilzomib and Rituximab demonstrated improved

effects. In order to determine the effects of these drugs on biomarkers another

biomarker interaction model was developed and the effects of drugs on their ex-

pression level were compared, again the Carfilzomib, Oprozomib and Rituximab

have shown improved effects on the expression level of biomarkers.

In Future this work can be further used in the In vitro to validate the identified

biomarkers as being resistant against Bortezomib, thus, these biomarkers could

anticipate the degree of disease. This method could also be extended able to the

analysis of the numerous types of cancer to yield novel helpful biomarkers. The

predictions of the model in this dissertation will have various essential potential
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clinical implications. The PK/PD model can be further used to study the PK/PD

of other drug compounds, the modeling work presented in this study can be in-

strumental in illuminating the structure of further investigations, and can add to

clinical research being performed in an increasingly successful and effective way.

However, this study still has some limitations as it is In-silico and needs In-vitro

confirmation.
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Abba, “Bioplat: a software for human cancer biomarker discovery,” Bioin-

formatics, vol. 30, no. 12, pp. 1782–1784, 2014.

[193] S. L. Shafer and J. R. Varvel, “Pharmacokinetics, pharmacodynamics, and

rational opioid selection,” Anesthesiology, vol. 74, no. 1, pp. 53–63, 1991.

[194] E. Nelson, “Kinetics of drug absorption, distribution, metabolism, and ex-

cretion,” Journal of pharmaceutical sciences, vol. 50, no. 3, pp. 181–192,

1961.



Bibliography 142

[195] T. Teorell, “Kinetics of distribution of substances administered to the body,

i: the extravascular modes of administration,” Archives internationales de

pharmacodynamie et de therapie, vol. 57, no. 1, pp. 205–225, 1937.
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